cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A247387 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (1234567)*.

Original entry on oeis.org

21, 42, 21, 42, 14, 8, 7, 21, 42, 21, 42, 14, 8, 7, 21, 42, 21, 42, 14, 8, 7, 21, 42, 21, 42, 14, 8, 7, 21, 42, 21, 42, 14, 8, 7, 21, 42, 21, 42, 14, 8, 7, 21, 42, 21, 42, 14, 8, 7, 21, 42, 21, 42, 14, 8, 7, 21, 42, 21, 42, 14, 8, 7, 21, 42, 21, 42, 14, 8, 7
Offset: 2

Views

Author

Vincenzo Librandi, Sep 16 2014

Keywords

Crossrefs

Programs

  • Magma
    &cat[[21, 42, 21, 42, 14, 8,7]: n in [0..30]];
  • Mathematica
    CoefficientList[Series[(21 + 42 x + 21 x^2 + 42 x^3 + 14 x^4 + 8 x^5 + 7 x^6)/(1 - x^7), {x, 0, 40}], x]

Formula

G.f.: x^2*(21 + 42*x + 21*x^2 + 42*x^3 + 14*x^4 + 8*x^5 + 7*x^6)/(1-x^7).

A247391 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (1234567891011).

Original entry on oeis.org

110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55
Offset: 2

Views

Author

Vincenzo Librandi, Sep 17 2014

Keywords

Crossrefs

Programs

  • Magma
    &cat[[110,55,55,55,110,110,110,55,22,12,11]: n in [0..10]];
  • Mathematica
    CoefficientList[Series[(110 + 55 x + 55 x^2 + 55 x^3 + 110 x^4 + 110 x^5 + 110 x^6 + 55 x^7 + 22 x^8 + 12 x^9 + 11 x^10)/(1-x^11), {x, 0, 60}], x]

Formula

G.f.: x^2*(110 + 55*x + 55*x^2 + 55*x^3 + 110*x^4 + 110*x^5 + 110*x^6 + 55*x^7 + 22*x^8 + 12*x^9 + 11*x^10)/(1-x^11).
a(n) = (1283*m^10 - 64570*m^9 + 1396065*m^8 - 16960020*m^7 + 127065939*m^6 - 605936100*m^5 + 1828078285*m^4 - 3335483030*m^3 + 3289569228*m^2 - 1288120680*m + 5443200)/453600 where m = (n mod 11). - Luce ETIENNE, Nov 04 2018

A247390 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (12345678910)*.

Original entry on oeis.org

41, 40, 21, 11, 11, 40, 41, 20, 11, 10, 41, 40, 21, 11, 11, 40, 41, 20, 11, 10, 41, 40, 21, 11, 11, 40, 41, 20, 11, 10, 41, 40, 21, 11, 11, 40, 41, 20, 11, 10, 41, 40, 21, 11, 11, 40, 41, 20, 11, 10, 41, 40, 21, 11, 11, 40, 41, 20, 11, 10, 41, 40, 21, 11, 11, 40
Offset: 2

Views

Author

Vincenzo Librandi, Sep 16 2014

Keywords

Crossrefs

Programs

  • Magma
    &cat[[41,40,21,11,11,40,41,20,11,10]: n in [0..10]];
  • Mathematica
    CoefficientList[Series [(41 + 40 x + 21 x^2 + 11 x^3 + 11 x^4 + 40 x^5 + 41 x^6 + 20 x^7 + 11 x^8 + 10 x^9)/(1 - x^10), {x, 0, 40}], x]

Formula

G.f.: x^2*(41 + 40*x + 21*x^2 + 11*x^3 + 11*x^4 + 40*x^5 + 41*x^6 + 20*x^7 + 11*x^8 + 10*x^9) / (1-x^10).

A247389 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123456789)*.

Original entry on oeis.org

54, 13, 27, 54, 16, 27, 18, 10, 9, 54, 19, 27, 54, 19, 27, 18, 10, 9, 54
Offset: 2

Views

Author

Vincenzo Librandi, Sep 16 2014

Keywords

Crossrefs

A247434 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123.....12)*.

Original entry on oeis.org

27, 25, 13, 24, 19, 24, 25, 13, 23, 24, 13, 12, 37, 25, 13, 24, 25, 24, 25
Offset: 2

Views

Author

Vincenzo Librandi, Sep 19 2014

Keywords

Crossrefs

A247442 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123...20)*.

Original entry on oeis.org

83, 80, 41, 21, 27, 80, 81, 40, 31, 40, 81, 80, 55, 41, 21, 80, 99, 40, 21
Offset: 2

Views

Author

Vincenzo Librandi, Sep 20 2014

Keywords

Crossrefs

A306640 Array read by antidiagonals: A(n,k) (n,k >= 2) is the base-n state complexity of the partitioned finite deterministic automaton (PFDA) for the periodic sequence (123..k)*.

Original entry on oeis.org

3, 6, 2, 7, 4, 3, 20, 8, 3, 2, 13, 20, 5, 6, 3, 21, 7, 10, 4, 4, 2, 15, 42, 7, 6, 9, 3, 3, 54, 16, 21, 12, 5, 8, 6, 2, 41, 13, 13, 42, 7, 20, 5, 4, 3, 110, 40, 27, 16, 14, 6, 20, 4, 3, 2, 27, 55, 21, 54, 23, 8, 13, 10, 9, 6, 3, 156, 25, 55, 11
Offset: 1

Views

Author

Charlie Neder, Mar 02 2019

Keywords

Comments

Rows are ultimately periodic.

Examples

			Array begins:
   3   2   3   2   3
   6   4   3   6   4
   7   8   5   4   9  ...
  20  20  10   6   5
  13   7   7  12   7
          ...
		

Crossrefs

Columns: A217519-A217521 (n = 2-4), A247566-A247581 (n = 5-20).
Rows: A217515-A217518 (k = 3-6), A247387-A247391 (k = 7-11), A247434-A247442 (k = 12-20).

Formula

A(n,n^k) = Sum_{i=0..k} n^i.
A(n+1,n) = n.
It also appears that A(n-1,n) = 2n.

A247388 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (12345678)*.

Original entry on oeis.org

15, 16, 13, 16, 23, 16, 9, 8, 25, 16, 17, 16, 25, 16, 9, 8, 25, 16, 17
Offset: 2

Views

Author

Vincenzo Librandi, Sep 16 2014

Keywords

Crossrefs

A247435 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123....13)*.

Original entry on oeis.org

156, 39, 78, 52, 156, 156, 52, 39, 78, 156, 26, 14, 13, 156, 39, 78, 52, 156, 156, 52, 39, 78, 156, 26, 14, 13, 156, 39, 78, 52, 156, 156, 52, 39, 78, 156, 26, 14, 13, 156, 39, 78, 52, 156, 156, 52, 39, 78, 156, 26, 14, 13, 156, 39, 78, 52, 156, 156, 52, 39
Offset: 2

Views

Author

Vincenzo Librandi, Sep 19 2014

Keywords

Crossrefs

Programs

  • Magma
    &cat[[156, 39, 78, 52, 156, 156, 52, 39, 78, 156, 26, 14, 13]: n in [0..10]];
  • Mathematica
    CoefficientList[Series[(156 + 39 x + 78 x^2 + 52 x^3 + 156 x^4 + 156 x^5 + 52 x^6 + 39 x^7 + 78 x^8 + 156 x^9 + 26 x^10 + 14 x^11 + 13 x^12)/(1 - x^13), {x, 0, 60}], x]
    PadRight[{},120,{156,39,78,52,156,156,52,39,78,156,26,14,13}] (* Harvey P. Dale, Mar 19 2021 *)

Formula

G.f.: x^2*(156 + 39*x + 78*x^2 + 52*x^3 + 156*x^4 + 156*x^5 + 52*x^6 + 39*x^7 + 78*x^8 + 156*x^9 + 26*x^10 + 14*x^11 + 13*x^12)/(1 - x^13).

A247436 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123...14)*.

Original entry on oeis.org

43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14, 43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14, 43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14, 43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14, 43, 84, 43, 84, 29, 15, 15, 42
Offset: 2

Views

Author

Vincenzo Librandi, Sep 19 2014

Keywords

Comments

Period 14, repeat [43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14].

Crossrefs

Programs

  • Magma
    &cat[[43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14]: n in [0..10]];
  • Mathematica
    CoefficientList[Series[(43 + 84 x + 43 x^2 + 84 x^3 + 29 x^4 + 15 x^5 + 15 x^6 + 42 x^7 + 85 x^8 + 42 x^9 + 85 x^10 + 28 x^11 + 15 x^12 + 14 x^13)/(1 - x^14), {x, 0, 60}], x]

Formula

G.f.: -x^2*(43+84*x+43*x^2+84*x^3+29*x^4+15*x^5+15*x^6+42*x^7+85*x^8+42*x^9+85
*x^10+28*x^11+15*x^12+14*x^13) / ( (x-1)*(1+x^6+x^5+x^4+x^3+x^2+x)*(1+x)*(1-x+
x^2-x^3+x^4-x^5+x^6) ).
Showing 1-10 of 15 results. Next