A217575 Numbers n such that floor(sqrt(n)) = floor(n/floor(sqrt(n)))-1.
2, 6, 7, 12, 13, 14, 20, 21, 22, 23, 30, 31, 32, 33, 34, 42, 43, 44, 45, 46, 47, 56, 57, 58, 59, 60, 61, 62, 72, 73, 74, 75, 76, 77, 78, 79, 90, 91, 92, 93, 94, 95, 96, 97, 98, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 132, 133, 134, 135, 136
Offset: 1
Keywords
Examples
As a triangle (see the second comment) this begins: 2; 6, 7; 12, 13, 14; 20, 21, 22, 23; 30, 31, 32, 33, 34; 42, 43, 44, 45, 46, 47; 56, 57, 58, 59, 60, 61, 62; 72, 73, 74, 75, 76, 77, 78, 79; 90, 91, 92, 93, 94, 95, 96, 97, 98; etc. - _Bruno Berselli_, Oct 11 2012
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Takumi Sato, Classification of Natural Numbers
Programs
-
Haskell
a217575 = subtract 1 . a063657 -- Reinhard Zumkeller, Jun 20 2015
-
Magma
[n: n in [1..150] | Isqrt(n) eq Floor(n/Isqrt(n))-1]; // Bruno Berselli, Oct 08 2012
-
Mathematica
Select[Range[200],Floor[Sqrt[#]]==Floor[#/Floor[Sqrt[#]]]-1&] (* Harvey P. Dale, Oct 06 2018 *)
-
PARI
is_A217575(n)=n\(n=sqrtint(n))-1==n \\ - M. F. Hasler, Oct 09 2012
Formula
a(n) = A063657(n) - 1. - Reinhard Zumkeller, Jun 20 2015
Comments