cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217775 a(n) = n*(n+1) + (n+2)*(n+3) + (n+4)*(n+5).

Original entry on oeis.org

26, 44, 68, 98, 134, 176, 224, 278, 338, 404, 476, 554, 638, 728, 824, 926, 1034, 1148, 1268, 1394, 1526, 1664, 1808, 1958, 2114, 2276, 2444, 2618, 2798, 2984, 3176, 3374, 3578, 3788, 4004, 4226, 4454, 4688, 4928, 5174, 5426, 5684, 5948, 6218, 6494, 6776, 7064
Offset: 0

Views

Author

Jon Perry, Mar 24 2013

Keywords

Examples

			a(1) = 1*2 + 3*4 + 5*6 = 2 + 12 + 30 = 44.
		

Crossrefs

Cf. A051890 (two pairs), A217776 (4 pairs).

Programs

  • GAP
    List([0..50], n-> (3*(2*n+5)^2 + 29)/4 ); # G. C. Greubel, Aug 27 2019
  • JavaScript
    for (j=0;j<50;j++) {
    a=j*(j+1)+(j+2)*(j+3)+(j+4)*(j+5);
    document.write(a+", ");
    }
    
  • Magma
    [(3*(2*n+5)^2 + 29)/4: n in [0..50]]; // G. C. Greubel, Aug 27 2019
    
  • Maple
    seq((3*(2*n+5)^2 + 29)/4, n=0..50); # G. C. Greubel, Aug 27 2019
  • Mathematica
    Table[3n^2+15n+26,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1}, {26,44,68}, 50] (* Harvey P. Dale, Oct 09 2018 *)
  • PARI
    a(n)=n*(n+1)+(n+2)*(n+3)+(n+4)*(n+5) \\ Charles R Greathouse IV, Jun 17 2017
    
  • Sage
    [(3*(2*n+5)^2 + 29)/4 for n in (0..50)] # G. C. Greubel, Aug 27 2019
    

Formula

G.f.: 2*(13-17*x+7*x^2)/(1-x)^3. - Bruno Berselli, Mar 29 2013
a(n) = 3*n^2 + 15*n + 26. - Bruno Berselli, Mar 29 2013
E.g.f.: (26 + 18*x + 3*x^2)*exp(x). - G. C. Greubel, Aug 27 2019
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Wesley Ivan Hurt, Jan 27 2022