A217924 a(n) = n! * [x^n] exp(2*exp(x) - x - 2). Row sums of triangle A217537.
1, 1, 3, 9, 35, 153, 755, 4105, 24323, 155513, 1064851, 7760745, 59895203, 487397849, 4166564147, 37298443977, 348667014723, 3395240969785, 34365336725715, 360837080222761, 3923531021460707, 44108832866004121, 511948390801374835, 6126363766802713481
Offset: 0
Keywords
Examples
a(3)=9 because we have: {1,2,3}; {1,3,2}; {1}{2,3}; {1}{3,2}; {2}{1,3}; {2}{3,1}; {3}{1,2}; {3}{2,1}; {1}{2}{3}. - _Geoffrey Critzer_, Mar 17 2013
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..556
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(2*Exp(x) -x-2) ))); // G. C. Greubel, Jan 09 2025 -
Maple
egf := exp(2*exp(x) - x - 2): ser := series(egf, x, 25): seq(n!*coeff(ser, x, n), n = 0..23); # Peter Luschny, Apr 22 2024
-
Mathematica
nn=23;Range[0,nn]!CoefficientList[Series[Exp[2 Exp[x]-x-2],{x,0,nn}],x] (* Geoffrey Critzer, Mar 17 2013 *) nmax = 25; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-2*k*x^2 , 1 - (k + 1)*x, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 25 2017 *)
-
Maxima
a(n):=sum(sum(binomial(n,k-j)*2^j*(-1)^(k-j)*stirling2(n-k+j,j),j,0,k),k,0,n); /* Vladimir Kruchinin, Feb 28 2015 */
-
Sage
def A217924_list(n): T = A217537_triangle(n) return [add(T.row(n)) for n in range(n)] A217924_list(24)
-
SageMath
def A217924_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( exp(2*exp(x)-x-2) ).egf_to_ogf().list() print(A217924_list(40)) # G. C. Greubel, Jan 09 2025
Formula
G.f.: 1/Q(0) where Q(k) = 1 + x*k - x/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 06 2013
E.g.f.: exp(2*exp(x) - x - 2). - Geoffrey Critzer, Mar 17 2013
G.f.: 1/Q(0), where Q(k) = 1 - (k+1)*x - 2*(k+1)*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: T(0)/(1-x), where T(k) = 1 - 2*x^2*(k+1)/( 2*x^2*(k+1) - (1-x-x*k)*(1-2*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 19 2013
a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(n,k-j)*2^j*(-1)^(k-j)*Stirling2(n-k+j,j). - Vladimir Kruchinin, Feb 28 2015
a(n) = exp(-2) * Sum_{k>=0} 2^k * (k - 1)^n / k!. - Ilya Gutkovskiy, Jun 27 2020
Conjecture: a(n) = Sum_{k=0..2^n-1} A372205(k). - Mikhail Kurkov, Nov 21 2021 [Rewritten by Peter Luschny, Apr 22 2024]
a(n) ~ 2 * n^(n-1) * exp(n/LambertW(n/2) - n - 2) / (sqrt(1 + LambertW(n/2)) * LambertW(n/2)^(n-1)). - Vaclav Kotesovec, Jun 26 2022
Extensions
Name extended by a formula of Geoffrey Critzer by Peter Luschny, Apr 22 2024
Comments