A218034 Number of ways to seat 4 types of people in n labeled seats around a circle such that no two adjacent people are of the same type.
1, 4, 12, 24, 84, 240, 732, 2184, 6564, 19680, 59052, 177144, 531444, 1594320, 4782972, 14348904, 43046724, 129140160, 387420492, 1162261464, 3486784404, 10460353200, 31381059612, 94143178824, 282429536484, 847288609440, 2541865828332, 7625597484984, 22876792454964
Offset: 0
Links
- K. Böhmová, C. Dalfó, C. Huemer, On cyclic Kautz digraphs, Preprint 2016.
- A. Burstein and H. S. Wilf, On cyclic strings without long constant blocks, Fibonacci Quarterly, 35 (1997), 240-247.
- Cristina Dalfó, From subKautz digraphs to cyclic Kautz digraphs, arXiv:1709.01882 [math.CO], 2017.
- C. Dalfó, The spectra of subKautz and cyclic Kautz digraphs, Linear Algebra and its Applications, 531 (2017), pp. 210-219.
- A. E. Edlin and D. Zeilberger, The Goulden-Jackson cluster method for cyclic words, Adv. Appl. Math., 25 (2000), 228-232.
- Petros Hadjicostas and Lingyun Zhang, On cyclic strings avoiding a pattern, Discrete Mathematics, 341 (2018), 1662-1674.
- Jair Taylor, Counting Words with Laguerre Series, Electron. J. Combin., 21 (2014), P2.1.
- Index entries for linear recurrences with constant coefficients, signature (2,3).
Crossrefs
Cf. A092297.
Programs
-
Mathematica
nn=28; CoefficientList[Series[1+4x +12x^2/(1+x)^2/(1-4x/(1+x)),{x,0,nn}],x] (* Geoffrey Critzer, Apr 05 2014 *)
-
Maxima
a[0]:1$ a[1]:4$ a[n]:=3^n + 3*(-1)^n$ makelist(a[n],n,0,40); /* Martin Ettl, Oct 21 2012 */
-
PARI
a(n) = if( n<2, [1,4][n+1], 3^n + 3*(-1)^n ); /* Joerg Arndt, Oct 21 2012 */
Formula
a(0) = 1, a(1) = 4, a(n) = 3^n + 3*(-1)^n for n >= 2.
a(n) = 4 * A054878(n) for n >= 2. - Joerg Arndt, Oct 21 2012
G.f.: (1 + 2*x + x^2 - 12*x^3)/((1 + x)*(1 - 3*x)). - Colin Barker, Oct 22 2012
Generally for such words on k letters, g.f.: 1 + k*x + (k^2-k)*x^2/(1 + x)^2/(1 - k*x/(1 + x)). - Geoffrey Critzer, Apr 05 2014 [Corrected by Petros Hadjicostas, Jul 08 2018]
a(n+m) = a(n)*a(m)/4 + a(n+1)*a(m+1)/12. - Yuchun Ji, Sep 12 2017
Extensions
a(0) = 1 prepended and more terms added by Joerg Arndt, Oct 21 2012
Comments