A253388 Numbers n such that the number of divisors of n is the product of two distinct primes.
12, 18, 20, 28, 32, 44, 45, 48, 50, 52, 63, 68, 75, 76, 80, 92, 98, 99, 112, 116, 117, 124, 144, 147, 148, 153, 162, 164, 171, 172, 175, 176, 188, 192, 207, 208, 212, 236, 242, 243, 244, 245, 261, 268, 272, 275, 279, 284, 292, 304, 316, 320, 324, 325, 332, 333
Offset: 1
Keywords
Examples
12 has 6 divisors, and 6 is the product of two distinct primes, 2 and 3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Amritpal Singh, c++ program for generating the sequence
Programs
-
Maple
filter:= proc(n) local F; F:= ifactors(numtheory:-tau(n))[2]; nops(F)=2 and F[1,2]=1 and F[2,2]=1; end proc: select(filter, [$1..1000]); # Robert Israel, Dec 31 2014
-
Mathematica
a253388Q[x_] := Block[{d = FactorInteger[DivisorSigma[0, x]]}, Length[d] == 2 && Max[Last@Transpose@d] == 1]; a253388[n_] := Select[Range@n, a253388Q]; a253388[333] (* Michael De Vlieger, Jan 02 2015 *) fQ[x_] := PrimeOmega@ x == 2 == PrimeNu@ x; Select[ Range@ 250, fQ[ DivisorSigma[0, #]] &] (* Robert G. Wilson v, Jan 13 2015 *)
-
PARI
isok(n) = (nbd = numdiv(n)) && (omega(nbd) == 2) && (bigomega(nbd) == 2); \\ Michel Marcus, Feb 07 2015
Comments