cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A185183 G.f. A(x) satisfies A(x) = 1+x + x^2*[d/dx A(x)^2].

Original entry on oeis.org

1, 1, 2, 10, 72, 672, 7640, 102072, 1564864, 27064448, 521248320, 11064781760, 256702399360, 6462978471168, 175520877380992, 5115062135795584, 159227683153536000, 5273353734210310144, 185143079148664099840, 6869062513111759635456
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 72*x^4 + 672*x^5 + 7640*x^6 +...
Related series:
A(x)^2 = 1 + 2*x + 5*x^2 + 24*x^3 + 168*x^4 + 1528*x^5 + 17012*x^6 +...
d/dx A(x)^2 = 2 + 10*x + 72*x^2 + 672*x^3 + 7640*x^4 + 102072*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+x+x^2*deriv(A^2+x*O(x^n))); polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies: A(x) = 1+x + 2*x^2*A(x)*A'(x).
a(n) ~ c * n! * 2^n / sqrt(n), where c = 0.493602095524198015213766719826126125048... - Vaclav Kotesovec, Feb 21 2014
a(0) = a(1) = 1; a(n) = (n-1) * Sum_{k=0..n-1} a(k) * a(n-k-1). - Ilya Gutkovskiy, Jul 05 2020
a(0) = a(1) = 1; a(n) = 2 * Sum_{k=0..n-1} k * a(k) * a(n-1-k). - Seiichi Manyama, Jul 16 2025

A218224 G.f. A(x) satisfies: A(x) = 1+x + x^2*[d/dx A(x)^4].

Original entry on oeis.org

1, 1, 4, 44, 684, 13636, 328000, 9198240, 294075040, 10549834368, 419626384128, 18330935118080, 872618259925632, 44970631837229184, 2494887017741434368, 148272655438005392896, 9399158287979230003200, 633107847492164526284800, 45159576693655485274008576
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 44*x^3 + 684*x^4 + 13636*x^5 + 328000*x^6 +...
Related series:
A(x)^3 = 1 + 4*x + 22*x^2 + 228*x^3 + 3409*x^4 + 65600*x^5 + 1533040*x^6 +...
d/dx A(x)^3 = 4 + 44*x + 684*x^2 + 13636*x^3 + 328000*x^4 + 9198240*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+x+x^2*deriv(A^4+x*O(x^n))); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies: A(x) = 1+x + 4*x^2*A(x)^3*A'(x).
a(n) ~ c * 4^n * n! / n^(1/4), where c = 0.2277218505566340305314... - Vaclav Kotesovec, Aug 24 2017

A217989 G.f. satisfies: A(x) = 1+x + x^2*A'(x)*A(x)^2.

Original entry on oeis.org

1, 1, 1, 4, 19, 116, 835, 6890, 63826, 654552, 7354893, 89830770, 1184915556, 16788863356, 254342837905, 4103256660048, 70241858430220, 1271839899568064, 24287699718766932, 487891841580468294, 10285169201486942788, 227042177973572054900
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 19*x^4 + 116*x^5 + 835*x^6 + 6890*x^7 +...
Related expansions:
A'(x) = 1 + 2*x + 12*x^2 + 76*x^3 + 580*x^4 + 5010*x^5 + 48230*x^6 +...
A(x)^2 = 1 + 2*x + 3*x^2 + 10*x^3 + 47*x^4 + 278*x^5 + 1956*x^6 + 15834*x^7 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+x+x^2*A'*(A^2+x*O(x^n))); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) ~ c * n! * n, where c = 0.21362630601338471861707529847387... - Vaclav Kotesovec, Feb 22 2014
Showing 1-3 of 3 results.