cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A218223 G.f. A(x) satisfies: A(x) = 1+x + x^2*[d/dx A(x)^3].

Original entry on oeis.org

1, 1, 3, 24, 273, 3996, 70785, 1465506, 34662222, 921511944, 27201024639, 882828325530, 31253560065684, 1198758613494852, 49530067909218819, 2193498057583259784, 103664556373964098860, 5207896547115772335552, 277161367378578537506868
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 24*x^3 + 273*x^4 + 3996*x^5 + 70785*x^6 +...
Related series:
A(x)^3 = 1 + 3*x + 12*x^2 + 91*x^3 + 999*x^4 + 14157*x^5 + 244251*x^6 +...
d/dx A(x)^3 = 3 + 24*x + 273*x^2 + 3996*x^3 + 70785*x^4 + 1465506*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+x+x^2*deriv(A^3+x*O(x^n))); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies: A(x) = 1+x + 3*x^2*A(x)^2*A'(x).
a(n) ~ c * 3^n * n! / n^(1/3), where c = 0.3133426736012301024021... - Vaclav Kotesovec, Aug 24 2017

A218224 G.f. A(x) satisfies: A(x) = 1+x + x^2*[d/dx A(x)^4].

Original entry on oeis.org

1, 1, 4, 44, 684, 13636, 328000, 9198240, 294075040, 10549834368, 419626384128, 18330935118080, 872618259925632, 44970631837229184, 2494887017741434368, 148272655438005392896, 9399158287979230003200, 633107847492164526284800, 45159576693655485274008576
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 44*x^3 + 684*x^4 + 13636*x^5 + 328000*x^6 +...
Related series:
A(x)^3 = 1 + 4*x + 22*x^2 + 228*x^3 + 3409*x^4 + 65600*x^5 + 1533040*x^6 +...
d/dx A(x)^3 = 4 + 44*x + 684*x^2 + 13636*x^3 + 328000*x^4 + 9198240*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+x+x^2*deriv(A^4+x*O(x^n))); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies: A(x) = 1+x + 4*x^2*A(x)^3*A'(x).
a(n) ~ c * 4^n * n! / n^(1/4), where c = 0.2277218505566340305314... - Vaclav Kotesovec, Aug 24 2017

A386208 G.f. A(x) satisfies A(x) = 1/(1-x) + x^2 * (d/dx A(x)^2).

Original entry on oeis.org

1, 1, 3, 15, 109, 1029, 11831, 159595, 2466073, 42920585, 830791243, 17706459431, 412116616517, 10403094478669, 283137307529727, 8266131486719107, 257710382446835761, 8546074646120275473, 300384437888406796051, 11155675460369469443263, 436506923733804200244509
Offset: 0

Views

Author

Seiichi Manyama, Jul 15 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+(i-1)*sum(j=0, i-1, v[j+1]*v[i-j])); v;

Formula

a(n) = 1 + (n-1) * Sum_{k=0..n-1} a(k) * a(n-1-k).
a(n) = 1 + 2 * Sum_{k=0..n-1} k * a(k) * a(n-1-k).

A218222 G.f. A(x) satisfies: A(x) = x + x*[d/dx A(x)^2].

Original entry on oeis.org

1, 2, 12, 112, 1360, 19872, 335104, 6359040, 133560576, 3069007360, 76493880320, 2054400577536, 59136549994496, 1816392567062528, 59305340822814720, 2051451257317490688, 74958908119819812864, 2885480280276224311296, 116731741304854533111808
Offset: 1

Views

Author

Paul D. Hanna, Jan 31 2013

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 12*x^3 + 112*x^4 + 1360*x^5 + 19872*x^6 +...
Related series:
A(x)^2 = x^2 + 4*x^3 + 28*x^4 + 272*x^5 + 3312*x^6 + 47872*x^7 + 794880*x^8 + 14840064*x^9 +...+ A112915(n-1)*x^n +...
d/dx A(x)^2 = 2*x + 12*x^2 + 112*x^3 + 1360*x^4 + 19872*x^5 +...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1,
          n*add(a(i)*a(n-i), i=1..n-1))
        end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Nov 05 2020
  • Mathematica
    a[n_] := a[n] = If[n<2, 1, n*Sum[a[i]*a[n-i], {i, 1, n-1}]];
    Array[a, 20] (* Jean-François Alcover, Dec 18 2020, after Maple *)
  • PARI
    {a(n)=local(A=x+x^2); for(i=1, n, A=x+x*deriv(A^2+x*O(x^n))); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = 2^(n-1)*A088716(n-1) for n>=1, where g.f. F(x) of A088716 satisfies: F(x) = 1 + x*F(x)*d/dx[x*F(x)].
a(n) = n*A112915(n-1) for n>=1.
G.f.: x*d/dx x*G(x), where g.f. G(x) of A112915 satisfies: G(x) = 1 + x*(d/dx[x*G(x)])^2.
a(n) ~ c * n * 2^(n-1) * n!, where c = A238223 = 0.21795078944715106549... - Vaclav Kotesovec, Aug 24 2017

A354737 a(0) = a(1) = 1; a(n) = n * Sum_{k=0..n-2} a(k) * a(n-k-2).

Original entry on oeis.org

1, 1, 2, 6, 20, 80, 336, 1568, 7584, 39312, 210080, 1180256, 6813312, 40890304, 251528704, 1597332480, 10376040448, 69259146752, 472084038144, 3295588345344, 23459477468160, 170610216311808, 1263629972183040, 9543419750909952, 73322350509367296, 573544008429363200
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = n Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 25}]
    nmax = 25; A[] = 0; Do[A[x] = 1 + x + 2 x^2 A[x]^2 + 2 x^3 A[x] D[A[x], x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x + 2 * x^2 * A(x)^2 + 2 * x^3 * A(x) * A'(x).

A354738 a(0) = a(1) = 1; a(n) = (n-1) * Sum_{k=0..n-2} a(k) * a(n-k-2).

Original entry on oeis.org

1, 1, 1, 4, 9, 40, 135, 636, 2688, 13552, 65871, 355520, 1906740, 10963656, 63468171, 386532944, 2383820820, 15294890848, 99626199832, 670333562352, 4583302104450, 32213942456000, 230118463761795, 1683896120829384, 12520330728001670, 95110075114630416
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = (n - 1) Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 25}]
    nmax = 25; A[] = 0; Do[A[x] = 1 + x + x^2 A[x]^2 + 2 x^3 A[x] D[A[x], x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x)^2 + 2 * x^3 * A(x) * A'(x).
Showing 1-6 of 6 results.