cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A211996 Number of ordered pairs (i,j) such that i*j=n and i+j is a square.

Original entry on oeis.org

0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 4, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Michel Marcus, Oct 25 2012

Keywords

Comments

a(n) = 1 for n > 0 in A141046.
a(8820) = 8 and it is the only term in the first 10000 terms that is greater than 6. There are 977 terms in the first 10000 terms that are greater than zero. - Harvey P. Dale, Nov 08 2012

Examples

			For n=3, the pairs (a,b) such that a*b=3 are (1,3) and (3,1). Both pairs add up to a square, so a(3) = 2.
		

Crossrefs

Programs

Formula

Sum_{k=1..n} a(k) = c * n^(3/4) + O(sqrt(n)), where c = A377731 (De Koninck et al., 2024). - Amiram Eldar, Nov 05 2024

A218382 Indices of records in A211996.

Original entry on oeis.org

1, 3, 48, 828, 8820, 26100, 417600, 2114100, 3009600, 43864128, 200278848, 1013911668, 7823392500, 16222586688, 259561387008, 633694792500, 4152982192128
Offset: 1

Views

Author

Michel Marcus, Oct 27 2012

Keywords

Comments

a(18) <= 10139116680000. - Donovan Johnson, Nov 24 2012

Crossrefs

Extensions

a(12)-a(17) from Donovan Johnson, Nov 24 2012

A228880 Numbers of the form x^2*y*(2*x + y).

Original entry on oeis.org

0, 3, 8, 15, 20, 24, 35, 48, 63, 80, 84, 99, 120, 128, 143, 144, 168, 180, 195, 224, 240, 243, 255, 275, 288, 308, 320, 323, 360, 384, 399, 440, 468, 483, 495, 528, 560, 575, 600, 624, 648, 660, 675, 728, 735, 768, 783, 819, 840, 884, 899, 960, 975, 1008
Offset: 1

Views

Author

Arkadiusz Wesolowski, Sep 11 2013

Keywords

Comments

(y^2 + 2*x*y - x^2)^4 + (2*x + y)*x^2*y*(2*x + 2*y)^4 = (x^4 + y^4 + 10*x^2*y^2 + 4*x*y^3 + 13*x^3*y)^2. The equation implies that for any n, x^4 + a(n)*y^4 = z^2 is solvable in integers.

References

  • L. E. Dickson, History of the Theory of Numbers, Vol. II. Diophantine analysis, Carnegie Institute of Washington, 1919. Reprinted by AMS Chelsea Publishing, New York, 1992, p. 631.

Crossrefs

Cf. A218381.

Programs

  • Mathematica
    n = 1008; limx = Floor[(n/2)^(1/3)]; limy = Floor@Sqrt[n]; Select[Union@Flatten@Table[x^2*y*(2*x + y), {x, 0, limx}, {y, limy}], # <= n &]
Showing 1-3 of 3 results.