cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A218405 Numbers k for which sigma(k)/k - 3/4 is an integer.

Original entry on oeis.org

4, 47616, 293760, 1782144, 3485664, 134209536, 282977280, 746444160, 1459956960, 1684126080, 1716728832, 27298252800, 41233360896, 376591138560, 719045268480, 1622308746240, 38965526046720, 41769966551040, 985261739212800, 3067660098994176
Offset: 1

Views

Author

Zdenek Cervenka, Oct 28 2012

Keywords

Comments

a(14) > 10^11. - Donovan Johnson, Oct 31 2012
a(16) > 10^12. - Giovanni Resta, Nov 04 2012

Crossrefs

Extensions

a(6)-a(13) from Donovan Johnson, Oct 31 2012
a(14)-a(15) from Giovanni Resta, Nov 04 2012
More terms from Michel Marcus, Jun 26 2013

A364976 3-abundant numbers k such that k/(sigma(k)-3*k) is an integer.

Original entry on oeis.org

180, 240, 360, 420, 540, 600, 780, 1080, 1344, 1872, 1890, 2016, 2184, 2352, 2376, 2688, 3192, 3276, 3744, 4284, 4320, 4680, 5292, 5376, 5796, 6048, 6552, 7128, 7440, 8190, 10416, 13776, 14850, 18600, 19824, 19872, 20496, 21528, 22932, 25056, 26208, 26496, 26784
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2023

Keywords

Comments

Analogous to A153501 as 3-abundant numbers (A068403) are analogous to abundant numbers (A005101).
Numbers k such that the sum of the divisors of k except for one of them is equal to 3*k.

Examples

			180 is a term since sigma(180) - 3*180 = 6 > 0 and 180 is divisible by 6.
		

Crossrefs

Subsequence of A068403.
A027687 is a subsequence.

Programs

  • Mathematica
    Select[Range[27000], (d = DivisorSigma[1, #] - 3*#) > 0 && Divisible[#, d] &]
  • PARI
    is(n) = {my(d = sigma(n) - 3*n); d > 0 && n%d == 0;}

A383482 Integers k such that sigma(k)/k - 1 is a rational square.

Original entry on oeis.org

1, 6, 9, 28, 216, 360, 496, 2016, 2401, 8128, 16758, 182520, 884736, 1022112, 1352328, 1571328, 1935360, 2678400, 33550336, 54758400, 101382400, 119533176, 136808280, 163298502, 198288000, 618591192, 691022088, 782481673, 796663296, 1137067008, 1275418369, 1303102080
Offset: 1

Views

Author

Michel Marcus, Apr 28 2025

Keywords

Examples

			6 is a term because sigma(6)/6 - 1 = 2 - 1 = 1, a square; like for all perfect numbers.
9 is a term because sigma(9)/9 - 1 = 13/9 - 1 = 4/9, a square.
		

Crossrefs

Cf. A000203 (sigma), A069070.
Subsequences: A000396 (perfect numbers), A046060 (5-multiperfect numbers), A381321.
Cf. A218404 (for those terms with sigma(x)/x = 13/4).

Programs

  • Mathematica
    q[k_] := And @@ IntegerQ /@ Sqrt[NumeratorDenominator[DivisorSigma[-1, k] - 1]]; Select[Range[2*10^6], q] (* Amiram Eldar, Apr 28 2025 *)
  • PARI
    isok(k) = issquare(sigma(k)/k - 1);

Extensions

a(30)-a(32) from Jinyuan Wang, Apr 28 2025

A381321 Numbers k such that sigma(k)/k - 1 equals (sigma(m)/m - 1)^2 for some m <= k.

Original entry on oeis.org

1, 6, 28, 216, 360, 496, 2016, 8128, 16758, 1571328, 1935360, 2678400, 33550336, 54758400, 101382400, 1685013120
Offset: 1

Views

Author

Leo Hennig, Feb 21 2025

Keywords

Comments

For any perfect number sigma(k)/k - 1 = 1, so all perfect numbers are terms.
2016 = 2^(6-1)*(2^6-1) is of the form 2^(k-1)*(2^k - 1) like the perfect numbers.
4428914688 from A383482 and 155086041146982400 from A218404 are terms. - Michel Marcus, May 22 2025

Examples

			216 is a term since sigma(216)/216 - 1 = (4/3)^2 and sigma(12)/12 - 1 = 4/3.
		

Crossrefs

Subsequence of A383482.

Programs

  • PARI
    isok(k)=my(t=(sigma(k)-k)*k); if(issquare(t), my(r=sqrtint(t)/k+1, s=denominator(r)); forstep(m=s, k, s, if(sigma(m)/m==r, return(1)) )); 0 \\ Andrew Howroyd, Mar 03 2025

Extensions

a(15)-a(16) from Michel Marcus, Mar 05 2025

A218429 Numbers k for which sigma(k)/k - 7/8 is an integer.

Original entry on oeis.org

8, 760320, 1468800, 4612608, 1414886400, 4935598080, 83655936000, 172888934400, 173172916224000, 225464073246720, 575926998958080, 650264059920384, 73439222840111923200, 88160928190086850560, 450645911113324953600, 600860926790121553920
Offset: 1

Views

Author

Zdenek Cervenka, Oct 28 2012

Keywords

Comments

a(8) > 10^11. - Donovan Johnson, Nov 01 2012
a(9) > 10^12. - Giovanni Resta, Nov 04 2012
Note that there are no terms here with abundancy 23/8 (k=2). - Michel Marcus, Jun 26 2013

Crossrefs

Extensions

a(5)-a(7) from Donovan Johnson, Nov 01 2012
a(8) from Giovanni Resta, Nov 04 2012
More terms from Michel Marcus, Jun 26 2013
Showing 1-5 of 5 results.