cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A218407 Numbers k for which sigma(k)/k - 2/5 is an integer.

Original entry on oeis.org

30, 140, 2480, 6200, 40640, 297600, 997920, 64995840, 167751680, 1502582400, 42949345280, 183196016640, 687193456640, 1447428787200, 63870637017600, 326676430080000, 20797363851264000, 24871926476966400, 42981218625945600, 404918548479244800
Offset: 1

Views

Author

Zdenek Cervenka, Oct 28 2012

Keywords

Comments

a(12) > 10^11. - Donovan Johnson, Oct 31 2012
a(14) > 10^12. - Giovanni Resta, Nov 04 2012
Note that there are no terms here with abundancy 7/5 (k=1). - Michel Marcus, Jun 26 2013

Crossrefs

Extensions

a(8)-a(11) from Donovan Johnson, Oct 31 2012
a(12)-a(13) from Giovanni Resta, Nov 04 2012
More terms from Michel Marcus, Jun 26 2013

A218408 Numbers k for which sigma(k)/k - 3/5 is an integer.

Original entry on oeis.org

15, 90, 3360, 2618880, 5059200, 4873497600, 7381524480, 27990144000, 57846297600, 4609292688000, 4440104532864000, 106644933787392000, 164741543366400000, 454310107592140800, 1084892424295680000, 1160492902900531200, 10932800808939609600
Offset: 1

Views

Author

Zdenek Cervenka, Oct 28 2012

Keywords

Comments

a(10) > 10^11. - Donovan Johnson, Oct 31 2012
a(10) > 10^12. - Giovanni Resta, Nov 04 2012

Crossrefs

Extensions

a(6)-a(9) from Donovan Johnson, Oct 31 2012
More terms from Michel Marcus, Jun 26 2013

A218427 Numbers k for which sigma(k)/k - 4/5 is an integer.

Original entry on oeis.org

10, 60, 1170, 114660, 72602880, 668304000, 714954240, 1307124000, 1381161600, 2701389600, 8052817920, 10181689600, 643773312000, 1330464844800, 2015156183040, 3522876144480, 15462510336000, 23885971200000, 702577007193600, 908714417345280
Offset: 1

Views

Author

Zdenek Cervenka, Oct 28 2012

Keywords

Comments

a(13) > 10^11. - Donovan Johnson, Oct 31 2012
a(14) > 10^12. - Giovanni Resta, Nov 04 2012

Crossrefs

Extensions

a(5)-a(12) from Donovan Johnson, Oct 31 2012
a(13) from Giovanni Resta, Nov 04 2012
More terms from Michel Marcus, Jun 26 2013

A326200 Lexicographically earliest sequence such that a(i) = a(j) => sigma(i)/i = sigma(j)/j for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 6, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2019

Keywords

Comments

Restricted growth sequence transform of the abundancy index of n.
For all i, j:
a(i) = a(j) <=> A094759(i) = A094759(j),
a(i) = a(j) => A017665(i) = A017665(j),
a(i) = a(j) => A017666(i) = A017666(j).

Crossrefs

Cf. A000396 (positions of 6's), A005820 (positions of 119's).

Programs

  • PARI
    up_to = 105664; \\ (In the same equivalence class as 78, 364 and 6448).
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v326200 = rgs_transform(vector(up_to,n,sigma(n)/n));
    A326200(n) = v326200[n];

A364976 3-abundant numbers k such that k/(sigma(k)-3*k) is an integer.

Original entry on oeis.org

180, 240, 360, 420, 540, 600, 780, 1080, 1344, 1872, 1890, 2016, 2184, 2352, 2376, 2688, 3192, 3276, 3744, 4284, 4320, 4680, 5292, 5376, 5796, 6048, 6552, 7128, 7440, 8190, 10416, 13776, 14850, 18600, 19824, 19872, 20496, 21528, 22932, 25056, 26208, 26496, 26784
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2023

Keywords

Comments

Analogous to A153501 as 3-abundant numbers (A068403) are analogous to abundant numbers (A005101).
Numbers k such that the sum of the divisors of k except for one of them is equal to 3*k.

Examples

			180 is a term since sigma(180) - 3*180 = 6 > 0 and 180 is divisible by 6.
		

Crossrefs

Subsequence of A068403.
A027687 is a subsequence.

Programs

  • Mathematica
    Select[Range[27000], (d = DivisorSigma[1, #] - 3*#) > 0 && Divisible[#, d] &]
  • PARI
    is(n) = {my(d = sigma(n) - 3*n); d > 0 && n%d == 0;}
Showing 1-5 of 5 results.