cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A218406 Numbers k for which sigma(k)/k - 1/5 is an integer.

Original entry on oeis.org

5, 420, 7440, 8190, 18600, 121920, 131040, 95472000, 102136320, 197308800, 433305600, 503255040, 71271827200, 91967616000, 128848035840, 190066406400, 287879454720, 354560976000, 799959888000, 2061580369920, 2208930048000, 100368143884800, 341546502528000
Offset: 1

Views

Author

Zdenek Cervenka, Oct 28 2012

Keywords

Comments

a(15) > 10^11. - Donovan Johnson, Oct 31 2012
a(20) > 10^12. - Giovanni Resta, Nov 04 2012
Note that there are no terms here with abundancy 11/5 (k=2). - Michel Marcus, Jun 26 2013

Crossrefs

Extensions

a(8)-a(14) from Donovan Johnson, Oct 31 2012
a(15)-a(19) from Giovanni Resta, Nov 04 2012
More terms from Michel Marcus, Jun 26 2013

A218408 Numbers k for which sigma(k)/k - 3/5 is an integer.

Original entry on oeis.org

15, 90, 3360, 2618880, 5059200, 4873497600, 7381524480, 27990144000, 57846297600, 4609292688000, 4440104532864000, 106644933787392000, 164741543366400000, 454310107592140800, 1084892424295680000, 1160492902900531200, 10932800808939609600
Offset: 1

Views

Author

Zdenek Cervenka, Oct 28 2012

Keywords

Comments

a(10) > 10^11. - Donovan Johnson, Oct 31 2012
a(10) > 10^12. - Giovanni Resta, Nov 04 2012

Crossrefs

Extensions

a(6)-a(9) from Donovan Johnson, Oct 31 2012
More terms from Michel Marcus, Jun 26 2013

A218427 Numbers k for which sigma(k)/k - 4/5 is an integer.

Original entry on oeis.org

10, 60, 1170, 114660, 72602880, 668304000, 714954240, 1307124000, 1381161600, 2701389600, 8052817920, 10181689600, 643773312000, 1330464844800, 2015156183040, 3522876144480, 15462510336000, 23885971200000, 702577007193600, 908714417345280
Offset: 1

Views

Author

Zdenek Cervenka, Oct 28 2012

Keywords

Comments

a(13) > 10^11. - Donovan Johnson, Oct 31 2012
a(14) > 10^12. - Giovanni Resta, Nov 04 2012

Crossrefs

Extensions

a(5)-a(12) from Donovan Johnson, Oct 31 2012
a(13) from Giovanni Resta, Nov 04 2012
More terms from Michel Marcus, Jun 26 2013

A326200 Lexicographically earliest sequence such that a(i) = a(j) => sigma(i)/i = sigma(j)/j for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 6, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2019

Keywords

Comments

Restricted growth sequence transform of the abundancy index of n.
For all i, j:
a(i) = a(j) <=> A094759(i) = A094759(j),
a(i) = a(j) => A017665(i) = A017665(j),
a(i) = a(j) => A017666(i) = A017666(j).

Crossrefs

Cf. A000396 (positions of 6's), A005820 (positions of 119's).

Programs

  • PARI
    up_to = 105664; \\ (In the same equivalence class as 78, 364 and 6448).
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v326200 = rgs_transform(vector(up_to,n,sigma(n)/n));
    A326200(n) = v326200[n];

A347222 Numbers k for which sigma(k)/k = 12/5.

Original entry on oeis.org

30, 140, 2480, 6200, 40640, 167751680, 42949345280, 687193456640, 11529215040699760640, 13292279957849158723273463079769210880, 957809713041180536473966890421518190654986607740846080, 65820182292848241686198767302293614551117361591934715588918640640
Offset: 1

Views

Author

Timothy L. Tiffin, Aug 23 2021

Keywords

Comments

This sequence will contain terms of the form 5*P, where P is a perfect number (A000396) not divisible by 5. Proof: sigma(5*P)/(5*P) = sigma(5)*sigma(P)/(5*P) = 6*(2*P)/(5*P) = 12/5. QED
Terms ending in "30", "40", or "80" have this form. Example: a(n) = 5*A000396(n) for n = 1, 2, 3 and a(n) = 5*A000396(n-1) for n = 5..12.

Examples

			6200 is a term, since sigma(6200)/6200 = 14880/6200 = 12/5.
		

Crossrefs

Subsequence of A005101 and A218407.

Programs

  • Mathematica
    Select[Range[5*10^8], DivisorSigma[1, #]/# == 12/5 &]
    Do[If[DivisorSigma[1, k]/k == 12/5, Print[k]], {k, 5*10^8}]

Extensions

a(9)-a(10) from Michel Marcus, Aug 24 2021
a(11)-a(12) from David A. Corneth, Aug 24 2021
Showing 1-5 of 5 results.