cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A218486 Positive numbers differing from next 2 greater squares by squares.

Original entry on oeis.org

48, 96, 160, 240, 288, 336, 448, 480, 576, 720, 960, 1008, 1344, 1440, 1728, 2016, 2160, 2400, 2640, 2688, 3168, 3360, 3456, 3744, 4320, 4368, 4480, 5040, 5280, 5760, 6336, 6720, 7200, 7488, 8640, 8736, 8800, 9408, 10080, 10560, 10800, 11520, 12096, 12480
Offset: 1

Views

Author

Michel Marcus, Oct 30 2012

Keywords

Comments

All terms are even. The sequence is infinite. E.g., positive terms of A173121 {48, 288, 960, 2400, 5040, 9408, 16128, 25920, 39600,...} is infinite subsequence of A218486. - Zak Seidov, Nov 26 2013
Another infinite subsequence is {96, 480, 1440, 3360, 6720, 12096, 20160, ...} = 96 *binomial(m,4) = 96*(positive terms in A000332). - Zak Seidov, Nov 26 2013

Examples

			48 = 7^2 - 1^2 = 8^2 - 4^2.
		

Crossrefs

Programs

  • PARI
    sq2(n) = {for (i=1, n, a = sqrtint(i) + 1; if (issquare(a^2-i) && issquare((a+1)^2-i), print1(i, ", ")););}

A218487 Positive numbers differing from next 3 greater squares by squares.

Original entry on oeis.org

720, 5040, 5760, 10080, 20160, 22176, 28800, 56160, 60480, 100800, 126720, 134640, 151200, 187200, 248976, 262080, 282240, 332640, 428400, 443520, 463680, 665280, 677376, 734400, 763776, 887040, 1108800, 1149120, 1190160, 1235520, 1497600, 1685376, 1718640
Offset: 1

Views

Author

Michel Marcus, Oct 30 2012

Keywords

Comments

All terms are multiples of 144. - Zak Seidov, Nov 27 2013

Examples

			720 = 27^2 - 3^2 = 28^2 - 8^2 = 29^2 - 11^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[172*10^4],AllTrue[Sqrt[(Floor[Sqrt[#]]+{1,2,3})^2-#],IntegerQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 18 2021 *)
  • PARI
    sq3(n) = {for (i=1, n, a = sqrtint(i) + 1; if (issquare(a^2-i) && issquare((a+1)^2-i) && issquare((a+2)^2-i), print1(i, ", ")););}

A218488 Positive numbers differing from next 4 greater squares by squares.

Original entry on oeis.org

60480, 2851200, 13366080, 42134400, 93139200, 588107520, 684391680, 1210809600, 10534043520, 16817673600, 38694427200, 52143537600, 54939044160, 59580892800, 89555155200, 104432328000, 136734998400, 356676566400, 663924381120, 1100581171200, 1200474475200
Offset: 1

Views

Author

Michel Marcus, Oct 30 2012

Keywords

Examples

			60480 = 246^2 - 6^2 = 247^2 - 23^2 = 248^2 - 32^2 = 249^2 - 39^2.
		

Crossrefs

Extensions

a(9)-a(21) from Donovan Johnson, Oct 31 2012

A342160 Numbers differing from the next greater cube by a cube.

Original entry on oeis.org

0, 7, 19, 26, 37, 56, 63, 98, 117, 124, 152, 189, 208, 215, 218, 279, 316, 335, 342, 387, 448, 485, 504, 511, 513, 604, 665, 702, 721, 728, 784, 875, 936, 973, 992, 999, 1115, 1206, 1267, 1304, 1323, 1330, 1385, 1512, 1603, 1664, 1701, 1720, 1727, 1854, 1981
Offset: 1

Views

Author

Lamine Ngom, Mar 26 2021

Keywords

Comments

Subsequence of A181123.

Examples

			37 = 4^3 - 3^3.
117 = 5^3 - 2^3.
		

Crossrefs

Programs

  • PARI
    isok(n)={my(t=(sqrtnint(n,3)+1)^3-n); sqrtnint(t,3)^3 == t} \\ Andrew Howroyd, Mar 26 2021
Showing 1-4 of 4 results.