cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218495 Number of partitions of n^2 into positive cubes.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 10, 17, 26, 39, 58, 89, 133, 195, 289, 420, 610, 875, 1253, 1778, 2514, 3527, 4937, 6879, 9516, 13115, 18012, 24625, 33503, 45432, 61402, 82677, 110913, 148286, 197722, 262768, 348100, 459791, 605780, 795874, 1042791, 1362800, 1776777
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 31 2012

Keywords

Comments

a(n) = A003108(A000290(n)).

Examples

			n=5: number of partitions of 25 into parts of {1, 8}:
a(5) = #{8+8+8+1, 8+8+9x1, 8+17x1, 25x1} = 4;
n=6: number of partitions of 36 into parts of {1, 8, 27}:
a(6) = #{27+8+1, 27+9x1, 4x8+4x1, 3x8+12x1, 8+8+20x1, 8+28x1, 36x1} = 7;
n=7: number of partitions of 49 into parts of {1, 8, 27}:
a(7) = #{27+8+8+6x1, 27+8+14x1, 27+22x1, 6x8+1, 5x8+9x1, 4x8+17x1, 3x8+25x1, 8+8+33x1, 8+41x1, 49x1} = 10.
		

Crossrefs

Programs

  • Haskell
    a218495 = p (tail a000578_list) . (^ 2) where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    
  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1) +`if`(i^3>n, 0, b(n-i^3, i)))
        end:
    a:= n-> b(n^2, iroot(n^2, 3)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 08 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i-1] + If[i^3>n, 0, b[n - i^3, i]]]; a[n_] := b[n^2, n^(2/3) // Floor]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
  • PARI
    a(n) = {my(nb=0); forpart(p=n^2, nb += (sum(k=1, #p, ispower(p[k], 3)) == #p);); nb;} \\ Michel Marcus, Jun 02 2015
    
  • PARI
    ok(p)=for(i=1,#p,if(!ispower(p[i],3),return(0)));1
    a(n)=my(s=1);for(i=8,n^2,forpart(p=i,s+=ok(p),[8,sqrtnint(i,3)^3]));s \\ Charles R Greathouse IV, Jun 02 2015

Formula

a(n) ~ exp(4 * (Gamma(1/3)*Zeta(4/3))^(3/4) * sqrt(n) / 3^(3/2)) * (Gamma(1/3)*Zeta(4/3))^(3/4) / (24*Pi^2*n^(5/2)) [after Hardy & Ramanujan, 1917]. - Vaclav Kotesovec, Apr 10 2017
a(n) = [x^(n^2)] Product_{k>=1} 1/(1 - x^(k^3)). - Ilya Gutkovskiy, Jun 05 2017

Extensions

More terms from Alois P. Heinz, Nov 08 2012