0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 2, 1, 3, 1, 3, 1, 1, 2, 1, 0, 3, 3, 2, 3, 3, 0, 3, 0, 3, 2, 1, 1, 4, 1, 2, 2, 1, 2, 0, 2, 2, 2, 3, 0, 4, 1, 1, 2, 0, 1, 2, 3, 5, 0, 2, 1, 3, 4, 1, 1, 2, 2, 6, 2, 2, 4, 1, 2, 3, 2, 3, 3, 3, 2, 4, 1, 2, 5, 0, 3, 4, 2, 3, 4, 3, 1, 4, 3
Offset: 1
A218825
Number of ways to write 2n-1 as p+2q with p, q and p^2+60q^2 all prime.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 1, 3, 1, 3, 3, 1, 2, 2, 1, 2, 3, 1, 2, 3, 1, 2, 2, 1, 3, 1, 1, 3, 3, 4, 3, 1, 2, 5, 3, 1, 3, 2, 4, 3, 3, 1, 7, 4, 1, 5, 3, 5, 8, 4, 3, 4, 3, 3, 5, 4, 4, 3, 2, 3, 5, 3, 5, 7, 3, 2, 9, 4, 4, 6, 3, 3, 8, 6, 1, 4, 5, 2, 7, 1, 4, 2, 4, 5, 5, 2, 4, 4, 3, 2, 5, 4, 5, 6, 4, 1
Offset: 1
A218771
Primes of the form p^2 + 3pq + q^2 with p and q prime.
Original entry on oeis.org
31, 59, 79, 179, 191, 229, 251, 311, 389, 401, 479, 491, 541, 569, 719, 809, 971, 1019, 1061, 1109, 1151, 1249, 1301, 1409, 1451, 1499, 1619, 1931, 1949, 2111, 2141, 2339, 2591, 2609, 2711, 2801, 2939, 3089, 3371, 3389, 3449, 3881, 4021, 4091, 4211, 4391, 4451, 4679, 5039, 5051
Offset: 1
a(1)=31 since 2^2 + 3*2*3 + 3^2 = 31 and 2,3,31 are prime.
-
SQ[n_]:=IntegerQ[Sqrt[n]]
i=0; Do[Do[If[SQ[4Prime[n]+5Prime[k]^2] && PrimeQ[(Sqrt[4Prime[n] + 5Prime[k]^2] - 3Prime[k])/2] == True, i=i+1; Print[i," ", Prime[n]]; Goto[aa]], {k,1,PrimePi[Sqrt[Prime[n]/5]]}];
Label[aa];Continue,{n,1,1000000}]
-
list(lim)=my(v=List(),t);forprime(p=2, sqrtint(lim\4), forprime(q=p+1,sqrt(lim-p^2), if(isprime(t=p^2+3*p*q+q^2), listput(v,t), if(t>lim,break)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Nov 05 2012
-
is_A218771(n,v=0)={ my(r,c=0); isprime(n) & forprime( q=1,sqrtint(n\5), issquare(4*n+5*q^2, &r) || next; isprime((r-3*q)/2) || next; v || return(1); v>1 & print1([q,(r-3*q)/2]","); c++);c} \\ - M. F. Hasler, Nov 05 2012
A219026
Number of primes p<=n such that 2n-p and 2n+p-2 are both prime.
Original entry on oeis.org
0, 0, 1, 0, 2, 0, 1, 2, 1, 0, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 0, 3, 1, 2, 2, 1, 2, 3, 1, 1, 3, 2, 2, 3, 3, 3, 3, 3, 1, 3, 1, 3, 2, 2, 2, 3, 4, 1, 4, 2, 2, 5, 1, 2, 4, 0, 3, 2, 3, 3, 2, 2, 1, 3, 3, 4, 4, 2, 3, 5, 3, 4, 3, 2, 3, 4, 3, 1, 3, 4, 3, 4, 3, 5, 4, 3, 3, 2, 3, 3, 3, 4, 2, 6, 3, 2, 7, 4, 2
Offset: 1
a(8)=2 since 3 and 5 are the only primes p<=8 with 16-p and 14+p both prime.
-
a[n_]:=a[n]=Sum[If[PrimeQ[2n-Prime[k]]==True&&PrimeQ[2n+Prime[k]-2]==True,1,0],{k,1,PrimePi[n]}]
Do[Print[n," ",a[n]],{n,1,20000}]
np[n_]:=Count[Prime[Range[PrimePi[n]]],?(AllTrue[{2n-#,2n+#-2},PrimeQ]&)]; Array[np,100] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale, Sep 23 2017 *)
A218797
Number of ways to write 2n - 1 as p + q + r with p <= q <= r and p, q, r, p^2 + q^2 + r^2 all prime.
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 2, 1, 2, 0, 1, 2, 2, 1, 3, 2, 3, 1, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 4, 1, 3, 2, 2, 2, 2, 2, 2, 4, 3, 3, 3, 2, 4, 4, 3, 0, 2, 1, 1, 1, 1, 2, 2, 3, 2, 4, 4, 3, 3, 2, 3, 4, 2, 2, 3, 2, 1, 3, 3, 1, 2, 2, 5, 1, 4, 2, 2, 1, 1, 6, 3, 1, 5, 1, 1, 5, 4, 1, 4, 1, 2, 6, 2, 4, 2, 2, 2, 1, 4, 4
Offset: 1
A219025
Number of primes p
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 4, 1, 2, 1, 3, 2, 2, 2, 2, 3, 2, 3, 1, 1, 2, 5, 2, 2, 2, 4, 3, 3, 4, 1, 2, 5, 3, 2, 2, 5, 4, 1, 3, 1, 3, 5, 3, 3, 3, 3, 4, 4, 2, 6, 4, 7, 5, 2, 3, 3, 7, 5, 3, 5, 5, 7, 4, 4, 2, 3, 4, 2, 3, 3, 6, 6, 3, 2, 5, 4, 7, 3, 4, 2, 3, 7, 1, 6, 4, 5, 6
Offset: 1
Showing 1-7 of 7 results.
Comments
Examples
Links
Crossrefs
Programs
Mathematica