A218721 a(n) = (18^n-1)/17.
0, 1, 19, 343, 6175, 111151, 2000719, 36012943, 648232975, 11668193551, 210027483919, 3780494710543, 68048904789775, 1224880286215951, 22047845151887119, 396861212733968143, 7143501829211426575, 128583032925805678351
Offset: 0
Examples
a(3) = (18^3 - 1)/17 = 343 = 7 * 49; a(6) = (18^6 - 1)/17 = 2000719 = 931 * 2149. - _Bernard Schott_, May 01 2017
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..800
- Harvey Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
- Index entries related to partial sums
- Index entries for linear recurrences with constant coefficients, signature (19,-18).
Crossrefs
Programs
-
Magma
[n le 2 select n-1 else 19*Self(n-1)-18*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
Mathematica
LinearRecurrence[{19, -18}, {0, 1}, 40] (* Vincenzo Librandi, Nov 07 2012 *) Join[{0},Accumulate[18^Range[0,20]]] (* Harvey P. Dale, Nov 08 2012 *)
-
Maxima
A218721(n):=(18^n-1)/17$ makelist(A218721(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
A218721(n)=18^n\17
Formula
a(n) = floor(18^n/17).
G.f.: x/((1-x)*(1-18*x)). - Bruno Berselli, Nov 06 2012
a(n) = 19*a(n-1) - 18*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(x)*(exp(17*x) - 1)/17. - Stefano Spezia, Mar 11 2023
Comments