cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A125118 Triangle read by rows: T(n,k) = value of the n-th repunit in base (k+1) representation, 1<=k<=n.

Original entry on oeis.org

1, 3, 4, 7, 13, 21, 15, 40, 85, 156, 31, 121, 341, 781, 1555, 63, 364, 1365, 3906, 9331, 19608, 127, 1093, 5461, 19531, 55987, 137257, 299593, 255, 3280, 21845, 97656, 335923, 960800, 2396745, 5380840, 511, 9841, 87381, 488281, 2015539, 6725601, 19173961, 48427561, 111111111
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 21 2006

Keywords

Examples

			First 4 rows:
1: [1]_2
2: [11]_2 ........ [11]_3
3: [111]_2 ....... [111]_3 ....... [111]_4
4: [1111]_2 ...... [1111]_3 ...... [1111]_4 ...... [1111]_5
_
1: 1
2: 2+1 ........... 3+1
3: (2+1)*2+1 ..... (3+1)*3+1 ..... (4+1)*4+1
4: ((2+1)*2+1)*2+1 ((3+1)*3+1)*3+1 ((4+1)*4+1)*4+1 ((5+1)*5+1)*5+1.
		

Crossrefs

This triangle shares some features with triangle A104878.
This triangle is a portion of rectangle A055129.
Each term of A110737 comes from the corresponding row of this triangle.
Diagonals (adjusting offset as necessary): A060072, A023037, A031973, A173468.
Cf. A023037, A031973, A125119, A125120 (row sums).

Programs

  • Magma
    [((k+1)^n -1)/k : k in [1..n], n in [1..12]]; // G. C. Greubel, Aug 15 2022
    
  • Mathematica
    Table[((k+1)^n -1)/k, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Aug 15 2022 *)
  • SageMath
    def A125118(n,k): return ((k+1)^n -1)/k
    flatten([[A125118(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Aug 15 2022

Formula

T(n, k) = Sum_{i=0..n-1} (k+1)^i.
T(n+1, k) = (k+1)*T(n, k) + 1.
Sum_{k=1..n} T(n, k) = A125120(n).
T(2*n-1, n) = A125119(n).
T(n, 1) = A000225(n).
T(n, 2) = A003462(n) for n>1.
T(n, 3) = A002450(n) for n>2.
T(n, 4) = A003463(n) for n>3.
T(n, 5) = A003464(n) for n>4.
T(n, 9) = A002275(n) for n>8.
T(n, n) = A060072(n+1).
T(n, n-1) = A023037(n) for n>1.
T(n, n-2) = A031973(n) for n>2.
T(n, k) = A055129(n, k+1) = A104878(n+k, k+1), 1<=k<=n. - Mathew Englander, Dec 19 2020

A104878 A sum-of-powers number triangle.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 15, 13, 5, 1, 1, 6, 31, 40, 21, 6, 1, 1, 7, 63, 121, 85, 31, 7, 1, 1, 8, 127, 364, 341, 156, 43, 8, 1, 1, 9, 255, 1093, 1365, 781, 259, 57, 9, 1, 1, 10, 511, 3280, 5461, 3906, 1555, 400, 73, 10, 1, 1, 11, 1023, 9841, 21845
Offset: 0

Views

Author

Paul Barry, Mar 28 2005

Keywords

Comments

Columns are partial sums of the columns of A004248. Row sums are A104879. Diagonal sums are A104880.
The rows of this triangle (apart from the initial "1" in each row) are the antidiagonals of rectangle A055129. The diagonals of this triangle (apart from the initial "1") are the rows of rectangle A055129. The columns of this triangle (apart from the leftmost column) are the same as the columns of rectangle A055129 but shifted downward. - Mathew Englander, Dec 21 2020

Examples

			Triangle starts:
  1;
  1,  1;
  1,  2,  1;
  1,  3,  3,  1;
  1,  4,  7,  4,  1;
  1,  5, 15, 13,  5,  1;
  1,  6, 31, 40, 21,  6,  1;
  ...
		

Crossrefs

Cf. A004248 (first differences by column), A104879 (row sums), A104880 (antidiagonal sums), A125118 (version of this triangle with fewer terms).
This triangle (ignoring the leftmost column) is a rotation of rectangle A055129.
T(2n,n) gives A031973.

Programs

  • Maple
    A104878 :=proc(n,k): if k = 0 then 1 elif k=1 then n elif k>=2 then (k^(n-k+1)-1)/(k-1) fi: end: for n from 0 to 7 do seq(A104878(n,k), k=0..n) od; seq(seq(A104878(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Aug 21 2011

Formula

T(n, k) = if(k=1, n, if(k<=n, (k^(n-k+1)-1)/(k-1), 0));
G.f. of column k: x^k/((1-x)(1-k*x)). [corrected by Werner Schulte, Jun 05 2019]
T(n, k) = A069777(n+1,k)/A069777(n,k). [Johannes W. Meijer, Aug 21 2011]
T(n, k) = A055129(n+1-k, k) for n >= k > 0. - Mathew Englander, Dec 19 2020

A345402 Numbers k such that (42^k-1)/41 is prime.

Original entry on oeis.org

2, 1319, 337081
Offset: 1

Views

Author

Paul Bourdelais, Sep 28 2021

Keywords

Comments

These are the repunit primes in base 42.

Examples

			2 is a member since (42^2-1)/41 = 43 is prime.
		

Crossrefs

Cf. A218745.

Programs

  • Mathematica
    Do[ If[ PrimeQ[ (42^n-1)/41], Print[n]], {n, 2, 400000}]
  • PARI
    is(n)=isprime((42^n-1)/41)
Showing 1-3 of 3 results.