cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219056 a(n) = 3*n^4.

Original entry on oeis.org

0, 3, 48, 243, 768, 1875, 3888, 7203, 12288, 19683, 30000, 43923, 62208, 85683, 115248, 151875, 196608, 250563, 314928, 390963, 480000, 583443, 702768, 839523, 995328, 1171875, 1370928, 1594323, 1843968, 2121843, 2430000, 2770563, 3145728, 3557763, 4009008
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 11 2012

Keywords

Crossrefs

Programs

  • Haskell
    a219056 = (* 3) . (^ 4)
    
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0, 3, 48, 243, 768},100] (* or *) Table[3*n^4, {n,0,50}] (* G. Greubel, Jun 22 2016 *)
  • Maxima
    makelist(3*n^4,n,0,30); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    a(n) = 3*n^4; \\ Michel Marcus, Jan 26 2022

Formula

a(n) = A219069(n,n) for n > 0;
a(n) = A008585(A000583(n)) = A000290(n)*A033428(n).
From Chai Wah Wu, Jun 22 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
G.f.: 3*x*(1 + x)*(1 + 10*x + x^2)/(1 - x)^5. (End)
E.g.f.: 3*x*(1 + 7*x + 6*x^2 + x^3)*exp(x). - G. C. Greubel, Jun 22 2016