cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219462 a(n) = Sum_{k = 1..2*n} binomial(2*n,k) * Fibonacci(2*k).

Original entry on oeis.org

0, 5, 75, 1000, 13125, 171875, 2250000, 29453125, 385546875, 5046875000, 66064453125, 864794921875, 11320312500000, 148184814453125, 1939764404296875, 25391845703125000, 332383575439453125, 4350957489013671875, 56954772949218750000, 745547657012939453125
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 20 2012

Keywords

Crossrefs

Programs

  • Haskell
    a219462 = sum . zipWith (*) a001906_list . a034870_row
    
  • Mathematica
    Table[Sum[Binomial[2n,k]Fibonacci[2k],{k,2n}],{n,0,20}] (* Harvey P. Dale, Aug 26 2017 *)
  • PARI
    a(n) = sum(k = 1, 2*n, binomial(2*n,k) * fibonacci(2*k)); \\ Michel Marcus, Jan 26 2022

Formula

a(n) = Sum_{k=1..n} A034870(n,k)*A001906(k).
a(n) = 5^n * Fibonacci(2*n) = A000351(n) * A001906(n).
G.f.: 5*x/(25*x^2-15*x+1). - Colin Barker, Dec 03 2012
E.g.f.: 2*exp(15*x/2)*sinh(5*sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, Oct 19 2023