cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A219509 Pierce expansion of 40 - 16*sqrt(6).

Original entry on oeis.org

1, 5, 24, 49, 200, 4801, 19208, 46099201, 184396808, 4250272665676801, 17001090662707208, 36129635465198759610694779187201, 144518541860795038442779116748808, 2610701117696295981568349760414651575095962187244375364404428801
Offset: 0

Views

Author

Peter Bala, Nov 23 2012

Keywords

Comments

Paradis et al. have determined the Pierce expansion of the quadratic irrationality 2*(p - 1)*(p - sqrt(p^2 - 1)), p a positive integer greater than or equal to 3. This is the case p = 5. For other cases see A219508 (p = 3), A219510 (p = 7) and A219511 (p = 9)

Crossrefs

Cf. A084765, A219508 (p = 3), A219510 (p = 7), A219511 (p = 9).

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[ N[4*(10 - 4*Sqrt[6]) , 7!], 10] (* G. C. Greubel, Nov 14 2016 *)
  • PARI
    r=(5 + 2*sqrt(6))/8; for(n=1, 10, print(floor(r), ", "); r=r/(r-floor(r))) \\ G. C. Greubel, Nov 15 2016

Formula

a(2*n+2) = 2*{(5 + 2*sqrt(6))^(2^n) + (5 - 2*sqrt(6))^(2^n) + 2} for n >= 0.
a(2*n+1) = 1/2*{(5 + 2*sqrt(6))^(2^n) + (5 - 2*sqrt(6))^(2^n)} for n >= 0.
Recurrence equations: a(0) = 1, a(1) = 5 and for n >= 1, a(2*n) = 4*(a(2*n-1) + 1) and a(2*n+1) = 2*(a(2*n-1))^2 - 1.
40 - 16*sqrt(6) = sum {n >= 0} 1/product {k = 0..n} a(k) = 1 - 1/5 + 1/(5*24) - 1/(5*24*49) + 1/(5*24*49*200) - ....
a(2*n) = 8*A084765(n-1)^2 for n >= 2.
a(2*n+1) = A084765(n+1) for n >= 0.

A219510 Pierce expansion of 84 - 48*sqrt(3).

Original entry on oeis.org

1, 7, 32, 97, 392, 18817, 75272, 708158977, 2832635912, 1002978273411373057, 4011913093645492232, 2011930833870518011412817828051050497, 8047723335482072045651271312204201992
Offset: 0

Views

Author

Peter Bala, Nov 23 2012

Keywords

Comments

Paradis et al. have determined the Pierce expansion of the quadratic irrationality 2*(p - 1)*(p - sqrt(p^2 - 1)), p a positive integer greater than or equal to 3. This is the case p = 7. For other cases see A219508 (p = 3), A219509 (p = 5) and A219511 (p = 9).

Crossrefs

Cf. A002812, A219508 (p = 3), A219509 (p = 5), A219511 (p = 9).

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[84 - 48*Sqrt[3] , 7!], 10] (* G. C. Greubel, Nov 15 2016 *)
  • PARI
    r=(7 + 4*sqrt(3))/12; for(n=1, 10, print(floor(r), ", "); r=r/(r-floor(r))) \\ G. C. Greubel, Nov 15 2016

Formula

a(2*n) = 2*{(2 + sqrt(3))^(2^n) + (2 - sqrt(3))^(2^n) + 2} for n >= 1.
a(2*n-1) = 1/2*{(2 + sqrt(3))^(2^n) + (2 - sqrt(3))^(2^n)} for n >= 1.
Recurrence equations: a(0) = 1, a(1) = 7 and for n >= 1 a(2*n) = 4*(a(2*n-1) + 1) and a(2*n+1) = 2*(a(2*n-1))^2 - 1.
84 - 48*sqrt(3) = 1 - 1/7 + 1/(7*32) - 1/(7*32*97) + 1/(7*32*97*392) - ....
a(2*n) = 8*A002812(n-1)^2 for n >= 1.
a(2*n+1) = A002812(n+1) for n >= 0.

A219511 Pierce expansion of 144 - 64*sqrt(5).

Original entry on oeis.org

1, 9, 40, 161, 648, 51841, 207368, 5374978561, 21499914248, 57780789062419261441, 231123156249677045768, 6677239169351578707225356193679818792961, 26708956677406314828901424774719275171848
Offset: 0

Views

Author

Peter Bala, Nov 23 2012

Keywords

Comments

Paradis et al. have determined the Pierce expansion of the quadratic irrationality 2*(p - 1)*(p - sqrt(p^2 - 1)), p a positive integer greater than or equal to 3. This is the case p = 9. For other cases see A219508 (p = 3), A219509 (p = 5) and A219510 (p = 7).

Crossrefs

Cf. A081459, A219508 (p = 3), A219509 (p = 5), A219510 (p = 7).

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[144 - 64*Sqrt[5] , 7!], 10] (* G. C. Greubel, Nov 15 2016 *)
  • PARI
    r=(9 + 4*sqrt(5))/16; for(n=1, 10, print(floor(r), ", "); r=r/(r-floor(r))) \\ G. C. Greubel, Nov 15 2016

Formula

a(2*n) = 2*{(2 + sqrt(5))^(2^n) + (2 - sqrt(5))^(2^n) + 2} for n >= 1.
a(2*n-1) = 1/2*{(2 + sqrt(5))^(2^n) + (2 - sqrt(5))^(2^n)} for n >= 1.
Recurrence equations: a(0) = 1, a(1) = 9 and for n >= 1, a(2*n) = 4*(a(2*n-1) + 1) and a(2*n+1) = 2*(a(2*n-1))^2 - 1.
144 - 64*sqrt(5) = 1 - 1/9 + 1/(9*40) - 1/(9*40*161) + 1/(9*40*161*648) - ....
a(2*n) = 8*A081459(n)^2 for n >= 2.
a(2*n+1) = A081459(n+2) for n >= 0.

A219506 Pierce expansion of 2 - sqrt(3).

Original entry on oeis.org

3, 5, 51, 53, 140451, 140453, 2770663499604051, 2770663499604053, 21269209556953516583554114034636483645584976451, 21269209556953516583554114034636483645584976453
Offset: 0

Views

Author

Peter Bala, Nov 22 2012

Keywords

Comments

For x in the open interval (0,1) define the map f(x) = 1 - x*floor(1/x). The n-th term (n >= 0) in the Pierce expansion of x is given by floor(1/f^(n)(x)), where f^(n)(x) denotes the n-th iterate of the map f, with the convention that f^(0)(x) = x.
The present sequence is the case x = 2 - sqrt(3).
Shallit has shown that the Pierce expansion of the quadratic irrational (c - sqrt(c^2 - 4))/2 has the form [c(0) - 1, c(0) + 1, c(1) - 1, c(1) + 1, c(2) - 1, c(2) + 1, ...], where c(0) = c and c(n+1) = c(n)^3 - 3*c(n). This is the case c = 4. For other cases see A006276 (c = 3), A219507 (c = 5) and A006275 (essentially c = 6 apart from the initial term).
The Pierce expansion of ((c - sqrt(c^2 - 4))/2)^(3^n) is [c(n) - 1, c(n) + 1, c(n+1) - 1, c(n+1) + 1, c(n+2) - 1, c(n+2) + 1, ...].

Examples

			We have the alternating series expansions
2 - sqrt(3) = 1/3 - 1/(3*5) + 1/(3*5*51) - 1/(3*5*51*53) + ...
(2 - sqrt(3))^3 = 1/51 - 1/(51*53) + 1/(51*53*140451) - ...
(2 - sqrt(3))^9 = 1/140451 - 1/(140451*140453) + ....
		

Crossrefs

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2 - Sqrt[3] , 7!], 10] (* G. C. Greubel, Nov 14 2016 *)

Formula

a(2*n) = (2 + sqrt(3))^(3^n) + (2 - sqrt(3))^(3^n) - 1.
a(2*n + 1) = (2 + sqrt(3))^(3^n) + (2 - sqrt(3))^(3^n) + 1.
From Peter Bala, Jan 18 2022: (Start)
a(2*n+2) = a(2*n)^3 + 3*a(2*n)^2 - 3; a(2*n+1) = a(2*n-1)^3 - 3*a(2*n-1)^2 + 3.
a(2*n) = 6*(Product_{k = 1..n-1} a(2*k))^2 - 3, with a(0) = 1;
a(2*n+1) = 2*(Product_{k = 0..n-1} a(2*k+1))^2 + 3, with a(1) = 5.
sqrt(3) = (1 + 2/3)*(1 + 2/51)*(1 + 2/140451)*(1 + 2/2770663499604051)* .... See Bauer.
1/sqrt(3) = (1 - 2/5)*(1 - 2/53)*(1 - 2/140453)*(1 - 2/2770663499604053)* .... (End)

A219507 Pierce expansion of (5 - sqrt(21))/2.

Original entry on oeis.org

4, 6, 109, 111, 1330669, 1330671, 2356194280407770989, 2356194280407770991, 13080769480548649962914459850235688797656360638877986029, 13080769480548649962914459850235688797656360638877986031
Offset: 0

Views

Author

Peter Bala, Nov 22 2012

Keywords

Comments

For x in the open interval (0,1) define the map f(x) = 1 - x*floor(1/x). The n-th term (n >= 0) in the Pierce expansion of x is given by floor(1/f^(n)(x)), where f^(n)(x) denotes the n-th iterate of the map f, with the convention that f^(0)(x) = x.
The present sequence is the case x = 1/2*(5 - sqrt(21)).
Jeffrey Shallit has shown that the Pierce expansion of the quadratic irrational (c - sqrt(c^2 - 4))/2 has the form [c(0) - 1, c(0) + 1, c(1) - 1, c(1) + 1, c(2) - 1, c(2) + 1, ...], where c(0) = c and c(n+1) = c(n)^3 - 3*c(n). This is the case c = 5. For other cases see A006276 (c = 3), A219506 (c = 4) and A006275 (essentially c = 6 apart from the initial term).
The Pierce expansion of ((c - sqrt(c^2 - 4))/2)^(3^n) is [c(n) - 1, c(n) + 1, c(n+1) - 1, c(n+1) + 1, c(n+2) - 1, c(n+2) + 1, ...].

Examples

			Let x = 1/2*(5 - sqrt(21)). We have the alternating series expansions
x = 1/4 - 1/(4*6) + 1/(4*6*109) - 1/(4*6*109*111) + ...
x^3 = 1/109 - 1/(109*111) + 1/(109*111*1330669) - ...
x^9 = 1/1330669 - 1/(1330669*1330671) + ....
		

Crossrefs

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[(5 - Sqrt[21])/2 , 7!], 10] (* G. C. Greubel, Nov 14 2016 *)

Formula

a(2*n) = (1/2*(5 + sqrt(21)))^(3^n) + (1/2*(5 - sqrt(21)))^(3^n) - 1.
a(2*n+1) = (1/2*(5 + sqrt(21)))^(3^n) + (1/2*(5 - sqrt(21)))^(3^n) + 1.
Showing 1-5 of 5 results.