cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A219658 Complement of A219650. Natural numbers that do not occur in A219651.

Original entry on oeis.org

3, 4, 8, 9, 13, 14, 18, 19, 20, 21, 22, 26, 27, 31, 32, 36, 37, 41, 42, 43, 44, 45, 49, 50, 54, 55, 59, 60, 64, 65, 66, 67, 68, 72, 73, 77, 78, 82, 83, 87, 88, 89, 90, 91, 95, 96, 100, 101, 105, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 122, 123, 127
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2012

Keywords

Comments

These are positive integers i for which there does not exist any k such that A034968(i+k) = k.

Crossrefs

A219650, A219651, A219666. Analogous sequence for binary system: A055938, for Zeckendorf expansion: A219638.

A219659 Irregular table where row n (n >= 0) starts with n, the next term is A219651(n), and the successive terms are obtained by repeatedly subtracting the sum of digits in the previous term's factorial expansion, until zero is reached, after which the next row starts with one larger n.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 1, 0, 4, 2, 1, 0, 5, 2, 1, 0, 6, 5, 2, 1, 0, 7, 5, 2, 1, 0, 8, 6, 5, 2, 1, 0, 9, 6, 5, 2, 1, 0, 10, 7, 5, 2, 1, 0, 11, 7, 5, 2, 1, 0, 12, 10, 7, 5, 2, 1, 0, 13, 10, 7, 5, 2, 1, 0, 14, 11, 7, 5, 2, 1, 0, 15, 11, 7, 5, 2, 1, 0, 16, 12, 10, 7, 5, 2, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Nov 25 2012

Keywords

Comments

Rows converge towards A219666 (reversed).
See A007623 for the Factorial number system representation.

Crossrefs

Cf. A007623, A034968, A219651, A219657. Analogous sequence for binary system: A218254, for Zeckendorf expansion: A219649.

A231723 a(n) = the difference between the n-th node of the infinite trunk of the factorial beanstalk (A219666(n)) and the smallest integer (A219653(n)) which is as many A219651-iteration steps distanced from the root (zero); a(n) = A219666(n) - A219653(n).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 0, 1, 3, 1, 2, 0, 1, 2, 4, 0, 0, 1, 3, 4, 2, 1, 1, 2, 1, 0, 1, 3, 1, 2, 0, 1, 2, 4, 0, 0, 1, 3, 4, 2, 1, 1, 2, 1, 0, 0, 1, 3, 2, 4, 0, 0, 1, 3, 4, 2, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 3, 4, 2, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 8, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Nov 13 2013

Keywords

Comments

For all n, the following holds: A219653(n) <= A219666(n) <= A219655(n). This sequence gives the distance of the node n in the infinite trunk of factorial beanstalk (A219666(n)) from the left (lesser) edge of the A219654(n) wide window which it at that point must pass through.
This sequence relates to the factorial base representation (A007623) in the same way as A218603 relates to the binary system and similar remarks apply here.

Crossrefs

Programs

Formula

a(n) = A219666(n) - A219653(n).
A219654(n) = a(n) + A231724(n) + 1.

A231724 a(n) = the difference between the n-th node of the infinite trunk of the factorial beanstalk (A219666(n)) and the greatest integer (A219655(n)) which is as many A219651-iteration steps distanced from the root (zero); a(n) = A219655(n) - A219666(n).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 3, 2, 0, 0, 1, 3, 2, 1, 1, 3, 3, 2, 2, 1, 3, 4, 4, 3, 4, 5, 6, 0, 0, 1, 3, 2, 1, 1, 3, 3, 2, 2, 1, 3, 4, 4, 3, 4, 5, 7, 4, 4, 5, 1, 3, 3, 2, 2, 1, 3, 4, 4, 3, 4, 5, 7, 5, 7, 7, 5, 6, 6, 1, 3, 4, 4, 3, 4, 5, 7, 5, 7, 7, 5, 6, 6, 2, 2, 3, 4, 5
Offset: 0

Views

Author

Antti Karttunen, Nov 13 2013

Keywords

Comments

For all n, the following holds: A219653(n) <= A219666(n) <= A219655(n). This sequence gives the distance of the node n in the infinite trunk of factorial beanstalk (A219666(n)) from the right (greater) edge of the A219654(n) wide window which it at that point must pass through.
This sequence relates to the factorial base representation (A007623) in the same way as A218604 relates to the binary system and similar remarks apply here.

Crossrefs

Programs

Formula

a(n) = A219655(n) - A219666(n).
A219654(n) = a(n) + A231723(n) + 1.

A034968 Minimal number of factorials that add to n.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7
Offset: 0

Views

Author

Keywords

Comments

Equivalently, sum of digits when n is written in factorial base (A007623).
Equivalently, a(0)...a(n!-1) give the total number of inversions of the permutations of n elements in lexicographic order (the factorial numbers in rising base are the inversion tables of the permutations and their sum of digits give the total number of inversions, see example and the Fxtbook link). - Joerg Arndt, Jun 17 2011
Also minimum number of adjacent transpositions needed to produce each permutation in the list A055089, or number of swappings needed to bubble sort each such permutation. (See A055091 for the minimum number of any transpositions.)

Examples

			a(205) = a(1!*1 + 3!*2 + 4!*3 + 5!*1) = 1+2+3+1 = 7. [corrected by Shin-Fu Tsai, Mar 23 2021]
From _Joerg Arndt_, Jun 17 2011: (Start)
   n:    permutation   inv. table a(n)  cycles
   0:    [ 0 1 2 3 ]   [ 0 0 0 ]   0    (0) (1) (2) (3)
   1:    [ 0 1 3 2 ]   [ 0 0 1 ]   1    (0) (1) (2, 3)
   2:    [ 0 2 1 3 ]   [ 0 1 0 ]   1    (0) (1, 2) (3)
   3:    [ 0 2 3 1 ]   [ 0 1 1 ]   2    (0) (1, 2, 3)
   4:    [ 0 3 1 2 ]   [ 0 2 0 ]   2    (0) (1, 3, 2)
   5:    [ 0 3 2 1 ]   [ 0 2 1 ]   3    (0) (1, 3) (2)
   6:    [ 1 0 2 3 ]   [ 1 0 0 ]   1    (0, 1) (2) (3)
   7:    [ 1 0 3 2 ]   [ 1 0 1 ]   2    (0, 1) (2, 3)
   8:    [ 1 2 0 3 ]   [ 1 1 0 ]   2    (0, 1, 2) (3)
   9:    [ 1 2 3 0 ]   [ 1 1 1 ]   3    (0, 1, 2, 3)
  10:    [ 1 3 0 2 ]   [ 1 2 0 ]   3    (0, 1, 3, 2)
  11:    [ 1 3 2 0 ]   [ 1 2 1 ]   4    (0, 1, 3) (2)
  12:    [ 2 0 1 3 ]   [ 2 0 0 ]   2    (0, 2, 1) (3)
  13:    [ 2 0 3 1 ]   [ 2 0 1 ]   3    (0, 2, 3, 1)
  14:    [ 2 1 0 3 ]   [ 2 1 0 ]   3    (0, 2) (1) (3)
  15:    [ 2 1 3 0 ]   [ 2 1 1 ]   4    (0, 2, 3) (1)
  16:    [ 2 3 0 1 ]   [ 2 2 0 ]   4    (0, 2) (1, 3)
  17:    [ 2 3 1 0 ]   [ 2 2 1 ]   5    (0, 2, 1, 3)
  18:    [ 3 0 1 2 ]   [ 3 0 0 ]   3    (0, 3, 2, 1)
  19:    [ 3 0 2 1 ]   [ 3 0 1 ]   4    (0, 3, 1) (2)
  20:    [ 3 1 0 2 ]   [ 3 1 0 ]   4    (0, 3, 2) (1)
  21:    [ 3 1 2 0 ]   [ 3 1 1 ]   5    (0, 3) (1) (2)
  22:    [ 3 2 0 1 ]   [ 3 2 0 ]   5    (0, 3, 1, 2)
  23:    [ 3 2 1 0 ]   [ 3 2 1 ]   6    (0, 3) (1, 2)
(End)
		

Crossrefs

Cf. A368342 (partial sums), A001809 (sums of n! terms).
Cf. A227148 (positions of even terms), A227149 (of odd terms).
Differs from analogous A276150 for the first time at n=24.
Positions of records are A200748.

Programs

  • Maple
    [seq(convert(fac_base(j),`+`),j=0..119)]; # fac_base and PermRevLexUnrank given in A055089. Perm2InversionVector in A064039
    Or alternatively: [seq(convert(Perm2InversionVector(PermRevLexUnrank(j)),`+`),j=0..119)];
    # third Maple program:
    b:= proc(n, i) local q;
          `if`(n=0, 0, b(irem(n, i!, 'q'), i-1)+q)
        end:
    a:= proc(n) local k;
          for k while k!Alois P. Heinz, Nov 15 2012
  • Mathematica
    a[n_] := Module[{s=0, i=2, k=n}, While[k > 0, k = Floor[n/i!]; s = s + (i-1)*k; i++]; n-s]; Table[a[n], {n, 0, 105}] (* Jean-François Alcover, Nov 06 2013, after Benoit Cloitre *)
  • PARI
    a(n)=local(k,r);k=2;r=0;while(n>0,r+=n%k;n\=k;k++);r \\ Franklin T. Adams-Watters, May 13 2009
    
  • Python
    def a(n):
        k=2
        r=0
        while n>0:
            r+=n%k
            n=n//k
            k+=1
        return r
    print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 19 2017, after PARI program
    
  • Python
    def A034968(n, p=2): return n if n
  • Scheme
    (define (A034968 n) (let loop ((n n) (i 2) (s 0)) (cond ((zero? n) s) (else (loop (quotient n i) (+ 1 i) (+ s (remainder n i)))))))
    ;; Antti Karttunen, Aug 29 2016
    

Formula

a(n) = n - Sum_{i>=2} (i-1)*floor(n/i!). - Benoit Cloitre, Aug 26 2003
G.f.: 1/(1-x)*Sum_{k>0} (Sum_{i=1..k} i*x^(i*k!))/(Sum_{i=0..k} x^(i*k!)). - Franklin T. Adams-Watters, May 13 2009
From Antti Karttunen, Aug 29 2016: (Start)
a(0) = 0; for n >= 1, a(n) = A099563(n) + a(A257687(n)).
a(0) = 0; for n >= 1, a(n) = A060130(n) + a(A257684(n)).
Other identities. For all n >= 0:
a(n) = A001222(A276076(n)).
a(n) = A276146(A225901(n)).
a(A000142(n)) = 1, a(A007489(n)) = n, a(A033312(n+1)) = A000217(n).
a(A056019(n)) = a(n).
A219651(n) = n - a(n).
(End)

Extensions

Additional comments from Antti Karttunen, Aug 23 2001

A219666 The infinite trunk of factorial expansion beanstalk. The only infinite sequence such that a(n-1) = a(n) - sum of digits in factorial expansion of a(n).

Original entry on oeis.org

0, 1, 2, 5, 7, 10, 12, 17, 23, 25, 28, 30, 35, 40, 46, 48, 52, 57, 63, 70, 74, 79, 85, 92, 97, 102, 109, 119, 121, 124, 126, 131, 136, 142, 144, 148, 153, 159, 166, 170, 175, 181, 188, 193, 198, 204, 213, 221, 228, 238, 240, 244, 249, 255, 262, 266, 271, 277
Offset: 0

Views

Author

Antti Karttunen, Nov 25 2012

Keywords

Comments

a(n) tells in what number we end in n steps, when we start climbing up the infinite trunk of the "factorial beanstalk" from its root (zero).
There are many finite sequences such as 0,1,2,4; 0,1,2,5,6; etc. obeying the same condition (see A219659) and as the length increases, so (necessarily) does the similarity to this infinite sequence.
See A007623 for the factorial number system representation.

Crossrefs

Cf. A007623, A034968, A219651, A230411, A226061. For all n, A219652(a(n)) = n and A219653(n) <= a(n) <= A219655(n).
Characteristic function: Χ_A219666(n) = A230418(n+1)-A230418(n).
The first differences: A230406.
Subsets: A230428 & A230429.
Analogous sequence for binary system: A179016, for Fibonacci number system: A219648.

Programs

  • Mathematica
    nn = 10^3; m = 1; While[m! < Floor[6 nn/5], m++]; m; t = TakeWhile[Reverse@ NestWhileList[# - Total@ IntegerDigits[#, MixedRadix[Reverse@ Range[2, m]]] &, Floor[6 nn/5], # > 0 &], # <= nn &] (* Michael De Vlieger, Jun 27 2016, Version 10.2 *)
  • Scheme
    ;; Memoizing definec-macro from Antti Karttunen's IntSeq-library
    (definec (A219666 n) (cond ((<= n 2) n) ((= (A226061 (A230411 n)) n) (- (A000142 (A230411 n)) 1)) (else (- (A219666 (+ n 1)) (A034968 (A219666 (+ n 1)))))))
    ;; Another variant, utilizing A230416 (which gives a more convenient way to compute large number of terms of this sequence):
    (define (A219666 n) (A230416 (A230432 n)))
    ;; This function is for checking whether n belongs to this sequence:
    (define (inA219666? n) (or (zero? n) (= 1 (- (A230418 (+ 1 n)) (A230418 n)))))

Formula

a(0) = 0, a(1) = 1, and for n>1, if A226061(A230411(n)) = n then a(n) = A230411(n)!-1, otherwise a(n) = a(n+1) - A034968(a(n+1)).
a(n) = A230416(A230432(n)).

A236840 n minus number of runs in the binary expansion of n: a(n) = n - A005811(n).

Original entry on oeis.org

0, 0, 0, 2, 2, 2, 4, 6, 6, 6, 6, 8, 10, 10, 12, 14, 14, 14, 14, 16, 16, 16, 18, 20, 22, 22, 22, 24, 26, 26, 28, 30, 30, 30, 30, 32, 32, 32, 34, 36, 36, 36, 36, 38, 40, 40, 42, 44, 46, 46, 46, 48, 48, 48, 50, 52, 54, 54, 54, 56, 58, 58, 60, 62, 62, 62, 62, 64, 64, 64
Offset: 0

Views

Author

Antti Karttunen, Apr 18 2014

Keywords

Comments

All terms are even. Used by the "number-of-runs beanstalk" sequence A255056 and many of its associated sequences.

Crossrefs

Cf. A091067 (the positions of records), A106836 (run lengths).
Cf. A255070 (terms divided by 2).

Programs

  • Maple
    A236840 := proc(n) local i, b; if n=0 then 0 else b := convert(n, base, 2); select(i -> (b[i-1]<>b[i]), [$2..nops(b)]); n-1-nops(%) fi end: seq(A236840(i), i=0..69); # Peter Luschny, Apr 19 2014
  • Mathematica
    a[n_] := n - Length@ Split[IntegerDigits[n, 2]]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Jul 16 2023 *)
  • Scheme
    (define (A236840 n)  (- n (A005811 n)))

Formula

a(n) = n - A005811(n) = n - A000120(A003188(n)).
a(n) = 2*A255070(n).

A219652 Number of steps to reach 0 starting with n and using the iterated process: x -> x - (sum of digits in factorial expansion of x).

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19
Offset: 0

Views

Author

Antti Karttunen, Nov 25 2012

Keywords

Comments

See A007623 for the factorial number system representation.

Crossrefs

Analogous sequence for binary system: A071542, for Zeckendorf expansion: A219642. Cf. A007623, A034968, A219650, A219651, A219653-A219655, A219659, A219661, A219666.

Programs

  • Mathematica
    nn = 72; m = 1; While[Factorial@ m < nn, m++]; m; Table[Length@ NestWhileList[# - Total@ IntegerDigits[#, MixedRadix[Reverse@ Range[2, m]]] &, n, # > 0 &] - 1, {n, 0, nn}] (* Michael De Vlieger, Jun 27 2016, Version 10.2 *)

Formula

a(0)=0; for n>0, a(n) = 1 + a(A219651(n)).

Extensions

Erroneous description corrected by Antti Karttunen, Dec 03 2012

A219641 a(n) = n minus (number of 1's in Zeckendorf expansion of n).

Original entry on oeis.org

0, 0, 1, 2, 2, 4, 4, 5, 7, 7, 8, 9, 9, 12, 12, 13, 14, 14, 16, 16, 17, 20, 20, 21, 22, 22, 24, 24, 25, 27, 27, 28, 29, 29, 33, 33, 34, 35, 35, 37, 37, 38, 40, 40, 41, 42, 42, 45, 45, 46, 47, 47, 49, 49, 50, 54, 54, 55, 56, 56, 58, 58, 59, 61, 61, 62, 63, 63, 66
Offset: 0

Views

Author

Antti Karttunen, Nov 24 2012

Keywords

Comments

See A014417 for the Fibonacci number system representation, also known as Zeckendorf expansion.

Crossrefs

Cf. A007895, A014417. A022342 gives the positions of records, resulting the same sequence with duplicates removed: A219640. A035336 gives the positions of values that occur only once: A219639. Cf. also A219637, A219642. Analogous sequence for binary system: A011371, for factorial number system: A219651.

Programs

  • Mathematica
    zeck = DigitCount[Select[Range[0, 500], BitAnd[#, 2*#] == 0&], 2, 1];
    Range[0, Length[zeck]-1] - zeck (* Jean-François Alcover, Jan 25 2018 *)
  • Python
    from sympy import fibonacci
    def a(n):
        k=0
        x=0
        while n>0:
            k=0
            while fibonacci(k)<=n: k+=1
            x+=10**(k - 3)
            n-=fibonacci(k - 1)
        return str(x).count("1")
    print([n - a(n) for n in range(101)]) # Indranil Ghosh, Jun 09 2017
  • Scheme
    (define (A219641 n) (- n (A007895 n)))
    

Formula

a(n) = n - A007895(n).

A219650 The nonnegative integers n such that there exists a number k with A034968(n+k)=k.

Original entry on oeis.org

0, 1, 2, 5, 6, 7, 10, 11, 12, 15, 16, 17, 23, 24, 25, 28, 29, 30, 33, 34, 35, 38, 39, 40, 46, 47, 48, 51, 52, 53, 56, 57, 58, 61, 62, 63, 69, 70, 71, 74, 75, 76, 79, 80, 81, 84, 85, 86, 92, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108, 109, 119, 120, 121, 124
Offset: 0

Views

Author

Antti Karttunen, Nov 25 2012

Keywords

Crossrefs

Inverse: A230414. (In a sense that A230414(a(n)) = n for all n).
First differences: A230405. Bisection of A219651. Complement: A219658. Characteristic function: A230412. Cf. also A230423 and A230424.
Analogous sequence for binary system: A005187, for Zeckendorf expansion: A219640.

Formula

a(0) = 0; and for n>0, a(n) = a(n-1) + A230405(n-1).
a(n) = A219651(2*n).
a(n) ~ 2*n. - Amiram Eldar, Jan 21 2024

Extensions

Name changed by Antti Karttunen, Nov 01 2013
Showing 1-10 of 22 results. Next