A219696 Numbers k such that the trajectory of 3k + 1 under the '3x + 1' map reaches k.
1, 2, 4, 8, 10, 14, 16, 20, 22, 26, 40, 44, 52, 106, 184, 206, 244, 274, 322, 526, 650, 668, 790, 866, 976, 1154, 1300, 1438, 1732, 1780, 1822, 2308, 2734, 3238, 7288
Offset: 1
Examples
For k = 4, the Collatz trajectory of 3k + 1 is (13, 40, 20, 10, 5, 16, 8, 4, 2, 1), which includes 4; thus, 4 is in the sequence. For k = 5, the Collatz trajectory of 3k + 1 is (16, 8, 4, 2, 1), which does not include 5; thus, 5 is not in the sequence.
Links
- Eric Weisstein's World of Mathematics, Collatz Problem
- Wikipedia, Collatz conjecture
- Index entries for sequences related to 3x+1 (or Collatz) problem
Programs
-
Haskell
a219696 n = a219696_list !! (n-1) a219696_list = filter (\x -> collatz'' x == x) [1..] where collatz'' x = until (`elem` [1, x]) a006370 (3 * x + 1) -- Reinhard Zumkeller, Aug 11 2014
-
Mathematica
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; Select[Range[10000], MemberQ[Collatz[3 # + 1], #] &] (* T. D. Noe, Dec 03 2012 *)
-
PARI
a006370(n) = if(n%2==0, n/2, 3*n+1) is(n) = my(x=3*n+1); while(1, x=a006370(x); if(x==n, return(1), if(x==1, return(0)))) \\ Felix Fröhlich, Jun 10 2021
-
Python
def ok(n): if n==1: return [1] N=3*n + 1 l=[N, ] while True: if N%2==1: N = 3*N + 1 else: N/=2 l+=[N, ] if N<2: break if n in l: return 1 return 0 # Indranil Ghosh, Apr 22 2017
Extensions
Initial 1 from Clark R. Lyons, Dec 02 2012
Comments