A219697 Primes neighboring a 7-smooth number.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 71, 73, 79, 83, 89, 97, 101, 107, 109, 113, 127, 139, 149, 151, 163, 167, 179, 181, 191, 193, 197, 199, 211, 223, 239, 241, 251, 257, 269, 271, 281, 293, 337, 349, 359, 379, 383, 401, 419, 421, 431
Offset: 1
Examples
23 is in the sequence as one of 23-1 = 22 = 2 * 11 and 23+1 = 24 = 2^3 * 3 is 7-smooth and 23 is prime. - _David A. Corneth_, Apr 19 2021
Links
- David A. Corneth, Table of n, a(n) for n = 1..10765 (terms <= 10^16)
Programs
-
Mathematica
mx = 2^10; t7 = Select[Sort[Flatten[Table[2^i * 3^j * 5^k * 7^l, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx]}, {k, 0, Log[5, mx]}, {l, 0, Log[7, mx]}]]], # <= mx &]; Union[Select[t7 + 1, PrimeQ], Select[t7 - 1, PrimeQ]] (* T. D. Noe, Nov 26 2012 *) Select[Prime[Range[90]],Max[FactorInteger[#-1][[;;,1]]]<11||Max[FactorInteger[#+1][[;;,1]]]<11&] (* Harvey P. Dale, Nov 03 2024 *)
-
PARI
is7smooth(n) = forprime(p = 2, 7, n /= p^valuation(n, p)); n==1 is(n) = isprime(n) && (is7smooth(n - 1) || is7smooth(n + 1)) \\ David A. Corneth, Apr 19 2021
Formula
Primes INTERSECTION {2^h 3^i 5^j 7^k +/-1 for h,i,j,k >= 0}.
Comments