cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A007107 Number of labeled 2-regular digraphs with n nodes.

Original entry on oeis.org

1, 0, 0, 1, 9, 216, 7570, 357435, 22040361, 1721632024, 166261966956, 19459238879565, 2714812050902545, 445202898702992496, 84798391618743138414, 18567039007438379656471, 4631381194792101913679985, 1305719477625154539392776080, 413153055417968797025496881656
Offset: 0

Views

Author

Keywords

Comments

Or number of n X n matrices with exactly two 1's in each row and column which are not in the main diagonal, other entries 0 (cf. A001499). - Vladimir Shevelev, Mar 22 2010
Number of 2-factors of the n-crown graph. - Andrew Howroyd, Feb 28 2016

References

  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. column t=0 of A284989.
Cf. A007108 (log transform), A197458 (row and column sum <=2), A219889 (unlabeled), A001499 (loops allowed).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, ((n-1)*(n-2)/2)^2,
          (n-1)*(2*(n^3-2*n^2+n+1)*a(n-1)/(n-2)+((n^2-2*n+2)*
          (n+1)*a(n-2) +(2*n^2-6*n+1)*n*a(n-3)+(n-3)*(a(n-4)*
          (n^3-5*n^2+3)-(n-4)*(n-1)*(n+1)*a(n-5))))/(2*n))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 10 2017
  • Mathematica
    Table[Sum[Sum[Sum[(-1)^(k+j-s)*n!*(n-k)!*(2n-k-2j-s)!/(s!*(k-s)!*(n-k-j)!^2*j!*2^(2n-2k-j)),{j,0,n-k}],{s,0,k}],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 09 2014 after Shanzhen Gao *)
  • PARI
    a(n)=sum(k=0,n, sum(s=0,k, sum(j=0,n-k, (-1)^(k+j-s)*n!*(n-k)!*(2*n-k-2*j-s)!/(s!*(k-s)!*(n-k-j)!^2*j!*2^(2*n-2*k-j))))) \\ Charles R Greathouse IV, Feb 08 2017

Formula

a(n) = Sum_{k=0..n} Sum_{s=0..k} Sum_{j=0..n-k} (-1)^(k+j-s)*n!*(n-k)!*(2n-k-2j-s)!/(s!*(k-s)!*(n-k-j)!^2*j!*2^(2n-2k-j)). - Shanzhen Gao, Nov 05 2007
a(n) ~ 2*sqrt(Pi) * n^(2*n+1/2) / exp(2*n+5/2). - Vaclav Kotesovec, May 09 2014

A219890 Number of directed 3-regular graphs on n nodes.

Original entry on oeis.org

1, 2, 23, 415, 19041, 1104045, 79818336, 6958257941, 720814138673, 87579097910309
Offset: 4

Views

Author

N. J. A. Sloane, Nov 30 2012

Keywords

Crossrefs

A219891 Number of directed 4-regular graphs on n nodes.

Original entry on oeis.org

1, 4, 92, 19041, 6510087, 2983458766, 1775668832509, 1349509467853512
Offset: 5

Views

Author

N. J. A. Sloane, Nov 30 2012

Keywords

Crossrefs

Column k=4 of A350910.

A219892 Number of directed 5-regular graphs on n nodes.

Original entry on oeis.org

1, 4, 624, 1104045, 2983458766, 10922621656743
Offset: 6

Views

Author

N. J. A. Sloane, Nov 30 2012

Keywords

Crossrefs

Column k=5 of A350910.

A219893 Number of directed 6-regular graphs on n nodes.

Original entry on oeis.org

1, 7, 5021, 79818336, 1775668832509
Offset: 7

Views

Author

N. J. A. Sloane, Nov 30 2012

Keywords

Crossrefs

Column k=6 of A350910.

A350910 Triangle read by rows: T(n,k) is the number of k-regular digraphs on n unlabeled nodes, k = 0..n-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 5, 2, 1, 1, 4, 23, 23, 4, 1, 1, 4, 92, 415, 92, 4, 1, 1, 7, 624, 19041, 19041, 624, 7, 1, 1, 8, 5021, 1104045, 6510087, 1104045, 5021, 8, 1, 1, 12, 47034, 79818336, 2983458766, 2983458766, 79818336, 47034, 12, 1
Offset: 1

Views

Author

Andrew Howroyd, Jan 29 2022

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,   1;
  1, 2,   2,     1;
  1, 2,   5,     2,     1;
  1, 4,  23,    23,     4,   1;
  1, 4,  92,   415,    92,   4, 1;
  1, 7, 624, 19041, 19041, 624, 7, 1;
  ...
		

Crossrefs

Row sums are A350911.
Cf. A051031 (graphs), A329228 (semi-regular), A350912.

A306827 Isomorphism classes of connected 2-in 2-out digraphs, allowing parallel edges but not loops.

Original entry on oeis.org

1, 2, 5, 13, 59, 285, 1987, 16057, 149430, 1551863, 17747299, 221015026
Offset: 2

Views

Author

Brendan McKay, Mar 12 2019

Keywords

Comments

From R. J. Mathar, Mar 15 2019: (Start)
The multiset transform (graphs with n>=2 nodes and k>=1 components) is
1
2
5 1
13 2
59 8 1
285 23 2
1987 100 8 1
16057 468 27 2
149430 2943 115 8 1
The row sums (Euler transform) are A307180. (End)

Examples

			For n=3, the a(3)=2 solutions consist of two superimposed directed triangles, one with the triangles oriented consistently and the other with the triangles oriented oppositely.
		

Crossrefs

Cf. A219889 (no multiedges, not necessarily connected), A306892 (loops permitted), A307180 (Euler transf.)

A005641 Number of 2-diregular digraphs with n nodes.

Original entry on oeis.org

1, 3, 8, 27, 131, 711, 5055, 41607, 389759, 4065605, 46612528, 581713045, 7846380548, 113718755478, 1762208816647, 29073392136390, 508777045979418
Offset: 2

Views

Author

Keywords

Comments

These graphs may have loops, whereas A219889 does not admit them. Both sequences do not admit multiedges. - R. J. Mathar, Mar 27 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005642 (inverse Euler transform, connected graphs).

A219894 Number of directed 2-regular graphs on n nodes without directed 2-cycles.

Original entry on oeis.org

1, 4, 9, 55, 453, 4357, 47598, 569769, 7371560, 102525991, 1525164223
Offset: 5

Views

Author

N. J. A. Sloane, Nov 30 2012

Keywords

Crossrefs

Extensions

a(14) and a(15) from Brendan McKay, Mar 12 2019

A219895 Number of directed 3-regular graphs on n nodes without directed 2-cycles.

Original entry on oeis.org

3, 26, 1547, 146487, 16018987, 1985766270, 278601715904
Offset: 7

Views

Author

N. J. A. Sloane, Nov 30 2012

Keywords

Crossrefs

Showing 1-10 of 11 results. Next