cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220082 Numbers k such that 10*k-1 is a square.

Original entry on oeis.org

1, 5, 17, 29, 53, 73, 109, 137, 185, 221, 281, 325, 397, 449, 533, 593, 689, 757, 865, 941, 1061, 1145, 1277, 1369, 1513, 1613, 1769, 1877, 2045, 2161, 2341, 2465, 2657, 2789, 2993, 3133, 3349, 3497, 3725, 3881, 4121, 4285, 4537, 4709, 4973, 5153, 5429, 5617, 5905
Offset: 1

Views

Author

Bruno Berselli, Dec 05 2012

Keywords

Comments

Equivalently, numbers of the form m*(10*m+6)+1, where m=0,-1,1,-2,2,-3,3,...

Crossrefs

Cf. A085787, A132356 (numbers n such that 10*n+1 is a square).
Cf. numbers n such that k*n-1 is a square: A002522 (k=1), A001844 (k=2), A062317 (k=5).

Programs

  • Magma
    [n: n in [1..6000] | IsSquare(10*n-1)]; /* or (see the first comment): */ [1] cat [m*(10*m+6)+1: m in [-n,n], n in [1..24]];
    
  • Magma
    I:=[1,5,17,29,53]; [n le 5 select I[n] else Self(n-1) +2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Aug 18 2013
  • Maple
    A220082:=proc(q)
    local n;
    for n from 1 to q do if type(sqrt(10*n-1), integer) then print(n);
    fi; od; end:
    A220082(1000); # Paolo P. Lava, Feb 19 2013
  • Mathematica
    Select[Range[0, 6000], IntegerQ[Sqrt[10 # - 1]] &]
    CoefficientList[Series[(1 + 4 x + 10 x^2 + 4 x^3 + x^4) / ((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{1,5,17,29,53},50] (* Harvey P. Dale, Nov 19 2023 *)

Formula

G.f.: x*(1+4*x+10*x^2+4*x^3+x^4)/((1+x)^2*(1-x)^3).
a(n) = a(-n+1) = (10*n*(n-1)-(2*n-1)*(-1)^n+3)/4.
For the definition: 10*a(n)-1 = ((10*n-(-1)^n-5)/2)^2.
a(n) = A212570(n)-A212570(n-1) = 4*A085787(n-1)+1 = A132356(n-1)-(2*n-1)*(-1)^n.