cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A132356 a(2*k) = k*(10*k+2), a(2*k+1) = 10*k^2 + 18*k + 8, with k >= 0.

Original entry on oeis.org

0, 8, 12, 36, 44, 84, 96, 152, 168, 240, 260, 348, 372, 476, 504, 624, 656, 792, 828, 980, 1020, 1188, 1232, 1416, 1464, 1664, 1716, 1932, 1988, 2220, 2280, 2528, 2592, 2856, 2924, 3204, 3276, 3572, 3648, 3960, 4040, 4368, 4452, 4796, 4884, 5244, 5336, 5712
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 08 2007

Keywords

Comments

X values of solutions to the equation 10*X^3 + X^2 = Y^2.
Polygonal number connection: 2*H_n + 6S_n, where H_n is the n-th hexagonal number and S_n is the n-th square number. This is the base formula that is expanded upon to achieve the full series. See contributing formula below. - William A. Tedeschi, Sep 12 2010
Equivalently, numbers of the form 2*h*(5*h+1), where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ... . - Bruno Berselli, Feb 02 2017

Crossrefs

Cf. numbers m such that k*m+1 is a square: A005563 (k=1), A046092 (k=2), A001082 (k=3), A002378 (k=4), A036666 (k=5), A062717 (k=6), A132354 (k=7), A000217 (k=8), A132355 (k=9), A219257 (k=11), A152749 (k=12), A219389 (k=13), A219390 (k=14), A204221 (k=15), A074378 (k=16), A219394 (k=17), A219395 (k=18), A219396 (k=19), A219190 (k=20), A219391 (k=21), A219392 (k=22), A219393 (k=23), A001318 (k=24), A219259 (k=25), A217441 (k=26), A219258 (k=27), A219191 (k=28).
Cf. A220082 (numbers k such that 10*k-1 is a square).

Programs

  • Mathematica
    CoefficientList[Series[4*x*(2*x^2 + x + 2)/((1 - x)^3*(1 + x)^2), {x, 0, 50}], x] (* G. C. Greubel, Jun 12 2017 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,8,12,36,44},50] (* Harvey P. Dale, Dec 15 2023 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(4*x*(2*x^2+x+2)/((1-x)^3*(1+x)^2))) \\ G. C. Greubel, Jun 12 2017
    
  • PARI
    a(n) = n^2 + n + 6*((n+1)\2)^2 \\ Charles R Greathouse IV, Sep 11 2022

Formula

G.f.: 4*x*(2*x^2+x+2)/((1-x)^3*(1+x)^2). - R. J. Mathar, Apr 07 2008
a(n) = 10*x^2 - 2*x, where x = floor(n/2)*(-1)^n for n >= 1. - William A. Tedeschi, Sep 12 2010
a(n) = ((2*n+1-(-1)^n)*(10*(2*n+1)-2*(-1)^n))/16. - Luce ETIENNE, Sep 13 2014
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4. - Chai Wah Wu, May 24 2016
Sum_{n>=1} 1/a(n) = 5/2 - sqrt(1+2/sqrt(5))*Pi/2. - Amiram Eldar, Mar 15 2022
a(n) = n^2 + n + 6*ceiling(n/2)^2. - Ridouane Oudra, Aug 06 2022

Extensions

More terms from Max Alekseyev, Nov 13 2009

A212570 Number of (w,x,y,z) with all terms in {1,...,n} and |w-x|=|x-y|+|y-z|.

Original entry on oeis.org

0, 1, 6, 23, 52, 105, 178, 287, 424, 609, 830, 1111, 1436, 1833, 2282, 2815, 3408, 4097, 4854, 5719, 6660, 7721, 8866, 10143, 11512, 13025, 14638, 16407, 18284, 20329, 22490, 24831, 27296, 29953, 32742, 35735, 38868, 42217, 45714, 49439
Offset: 0

Views

Author

Clark Kimberling, May 22 2012

Keywords

Comments

For a guide to related sequences, see A211795.
Apart from the first term, partial sums of A220082. [Bruno Berselli, Dec 05 2012]

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Abs[w - x] == Abs[x - y] + Abs[y - z], s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]]   (* A212570 *)
    LinearRecurrence[{2,1,-4,1,2,-1},{0,1,6,23,52,105},40] (* Harvey P. Dale, Oct 02 2021 *)

Formula

a(n) = 2a(n-1)+a(n-2)-4a(n-3)+a(n-4)+2a(n-5)-a(n-6).
a(n) = n*(-1-3*(-1)^n+10*n^2)/12. G.f.: x*(x^4+4*x^3+10*x^2+4*x+1)/((x-1)^4*(x+1)^2). [Colin Barker, Oct 04 2012]

A274545 Values of k such that 5*k-1 and 10*k-1 are both perfect squares.

Original entry on oeis.org

1, 29, 33293, 1130977, 1305146305, 44336554445, 51164345409437, 1738081606216033, 2005744667435597089, 68136275082544365341, 78629202401645931667661, 2671078254047822603875969, 3082421990543579145800043553, 104711609647046466634601365517
Offset: 1

Views

Author

Colin Barker, Jun 27 2016

Keywords

Comments

Intersection of A062317 and A220082.

Examples

			29 is in the sequence because 5*29-1 = 144 = 12^2, and 10*29-1 = 289 = 17^2.
		

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (1 + 28 x- 5938 x^2 + 28 x^3 + x^4) / ((1 - x) (1 - 198 x + x^2) (1 + 198 x + x^2)), {x, 0, 17}], x] (* Michael De Vlieger, Jun 27 2016 *)
  • PARI
    Vec(x*(1+x)*(1-6*x+x^2)/((1-x)*(1-34*x+x^2)*(1+x+x^2)) + O(x^20))
    
  • PARI
    isok(n) = issquare(5*n-1) && issquare(10*n-1); \\ Michel Marcus, Jun 28 2016

Formula

a(n) = a(n-1) + 39202*a(n-2) - 39202*a(n-3) - a(n-4) + a(n-5) for n>5.
G.f.: x*(1 + 28*x - 5938*x^2 + 28*x^3 + x^4)/((1 - x)*(1 - 198*x + x^2)*(1 + 198*x + x^2)).
Showing 1-3 of 3 results.