cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A090771 Numbers that are congruent to {1, 9} mod 10.

Original entry on oeis.org

1, 9, 11, 19, 21, 29, 31, 39, 41, 49, 51, 59, 61, 69, 71, 79, 81, 89, 91, 99, 101, 109, 111, 119, 121, 129, 131, 139, 141, 149, 151, 159, 161, 169, 171, 179, 181, 189, 191, 199, 201, 209, 211, 219, 221, 229, 231, 239, 241, 249, 251, 259, 261, 269, 271, 279, 281
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 07 2004

Keywords

Comments

Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n + (h-4)*(-1)^n - h)/4 (h, n natural numbers), therefore ((2*h*n + (h-4)*(-1)^n - h)/4)^2-1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 10). - Bruno Berselli, Nov 17 2010

Crossrefs

Cf. A056020 (n = 1 or 8 mod 9), A175885 (n = 1 or 10 mod 11).
Cf. A045468 (primes), A195142 (partial sums).

Programs

Formula

a(n) = sqrt(40*A057569(n) + 1). - Gary Detlefs, Feb 22 2010
From Bruno Berselli, Sep 16 2010 - Nov 17 2010: (Start)
G.f.: x*(1 + 8*x + x^2)/((1 + x)*(1 - x)^2).
a(n) = (10*n + 3*(-1)^n - 5)/2.
a(n) = -a(-n + 1) = a(n-1) + a(n-2) - a(n-3) = a(n-2) + 10.
a(n) = 10*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i) for n > 1. (End)
a(n) = 10*n - a(n-1) - 10 (with a(1) = 1). - Vincenzo Librandi, Nov 16 2010
a(n) = sqrt(10*A132356(n-1) + 1). - Ivan N. Ianakiev, Nov 09 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/10)*cot(Pi/10) = A000796 * A019970 / 10 = sqrt(5 + 2*sqrt(5))*Pi/10. - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((10*x - 5)*exp(x) + 3*exp(-x))/2. - David Lovler, Sep 03 2022
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(phi+2) (A188593).
Product_{n>=2} (1 + (-1)^n/a(n)) = Pi*phi/5 = A094888/10. (End)

Extensions

Edited and extended by Ray Chandler, Feb 10 2004

A219257 Numbers k such that 11*k+1 is a square.

Original entry on oeis.org

0, 9, 13, 40, 48, 93, 105, 168, 184, 265, 285, 384, 408, 525, 553, 688, 720, 873, 909, 1080, 1120, 1309, 1353, 1560, 1608, 1833, 1885, 2128, 2184, 2445, 2505, 2784, 2848, 3145, 3213, 3528, 3600, 3933, 4009, 4360, 4440, 4809, 4893, 5280, 5368, 5773, 5865
Offset: 1

Views

Author

Bruno Berselli, Nov 16 2012

Keywords

Comments

Equivalently, numbers of the form m*(11*m+2), where m = 0,-1,1,-2,2,-3,3,...
Also, integer values of h*(h+2)/11.

Crossrefs

Cf. numbers k such that h*k+1 is a square: A005563 (h=1), A046092 (h=2), A001082 (h=3), A002378 (h=4), A036666 (h=5), A062717 (h=6), A132354 (h=7), A000217 (h=8), A132355 (h=9), A132356 (h=10), A152749 (h=12), A219389 (h=13), A219390 (h=14), A204221 (h=15), A074378 (h=16), A219394 (h=17), A219395 (h=18), A219396 (h=19), A219190 (h=20), A219391 (h=21), A219392 (h=22), A219393 (h=23), A001318 (h=24), A219259 (h=25), A217441 (h=26), A219258 (h=27), A219191 (h=28).
Cf. A175885 (square roots of 11*a(n)+1).

Programs

  • Magma
    [n: n in [0..7000] | IsSquare(11*n+1)];
    
  • Magma
    I:=[0,9,13,40,48]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Mathematica
    Select[Range[0, 7000], IntegerQ[Sqrt[11 # + 1]] &]
    CoefficientList[Series[x (9 + 4 x + 9 x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)

Formula

G.f.: x^2*(9+4*x+9*x^2)/((1+x)^2*(1-x)^3).
a(n) = a(-n+1) = (22*n*(n-1)+7*(-1)^n*(2*n-1)-1)/8 + 1 = (1/176)*(22*n+7*(-1)^n-15)*(22*n+7*(-1)^n-7).
Sum_{n>=2} 1/a(n) = 11/4 - cot(2*Pi/11)*Pi/2. - Amiram Eldar, Mar 15 2022

A057569 Numbers of the form k*(5*k+1)/2 or k*(5*k-1)/2.

Original entry on oeis.org

0, 2, 3, 9, 11, 21, 24, 38, 42, 60, 65, 87, 93, 119, 126, 156, 164, 198, 207, 245, 255, 297, 308, 354, 366, 416, 429, 483, 497, 555, 570, 632, 648, 714, 731, 801, 819, 893, 912, 990, 1010, 1092, 1113, 1199, 1221, 1311, 1334, 1428, 1452, 1550
Offset: 1

Views

Author

N. J. A. Sloane, Oct 04 2000

Keywords

Comments

a(n) is the set of all m such that 40*m+1 is a perfect square. - Gary Detlefs, Feb 22 2010
Integers of the form (n^2 - n) / 10. Numbers of the form n * (5*n - 1) / 2 where n is an integer. - Michael Somos, Jan 13 2012
Also integers of the form sum_{k=1..n} k/5. - Alonso del Arte, Jan 20 2012
These numbers appear in a theta function identity. See the Hardy-Wright reference, Theorem 356 on p. 284. See the G.f. of A113428. - Wolfdieter Lang, Oct 28 2016

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, p. 284.

Crossrefs

Programs

  • Magma
    [(10*(n^2-n)+12*(-1)^n*(n div 2))/16: n in [1..60]]; // Vincenzo Librandi, Oct 29 2016
  • Mathematica
    Select[Table[Plus@@Range[n]/5, {n, 0, 199}], IntegerQ] (* Alonso del Arte, Jan 20 2012 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,2,3,9,11},50] (* Harvey P. Dale, Jul 05 2021 *)
  • PARI
    {a(n) = (10 * (n^2 - n) + 12 * (-1)^n * (n\2)) / 16}; \\ Michael Somos, Jan 13 2012
    
  • PARI
    Vec(x^2*(2*x^2+x+2) / ((1-x)^3*(1+x)^2) + O(x^60)) \\ Colin Barker, Jun 13 2017
    

Formula

A005475 UNION A005476. G.f.: x^2*(2x^2+x+2)/((1-x)^3*(1+x)^2). a(n) = A132356(n+1)/4. - R. J. Mathar, Apr 07 2008
a(n) = (A090771(n)^2 -1)/40. - Gary Detlefs, Feb 22 2010
|A113428(n)| is the characteristic function of the numbers a(n).
a(n) = a(1 - n) for all n in Z. - Michael Somos, Jan 13 2012
From Colin Barker, Jun 13 2017: (Start)
a(n) = n*(5*n - 2)/8 for n even.
a(n) = (5*n - 3)*(n - 1)/8 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
(End)
From Amiram Eldar, Mar 17 2022: (Start)
Sum_{n>=2} 1/a(n) = 10 - 2*sqrt(1+2/sqrt(5))*Pi.
Sum_{n>=2} (-1)^n/a(n) = 2*sqrt(5)*log(phi) - 5*(2-log(5)), where phi is the golden ratio (A001622). (End)

A273366 a(n) = 10*n^2 + 10*n + 2.

Original entry on oeis.org

2, 22, 62, 122, 202, 302, 422, 562, 722, 902, 1102, 1322, 1562, 1822, 2102, 2402, 2722, 3062, 3422, 3802, 4202, 4622, 5062, 5522, 6002, 6502, 7022, 7562, 8122, 8702, 9302, 9922, 10562, 11222, 11902, 12602, 13322, 14062, 14822, 15602
Offset: 0

Views

Author

Keywords

Comments

These are the numbers k such that 10*k+5 is a perfect square.

Crossrefs

Cf. A033583 (perfect squares ending in 0 in base 10 with final 0 removed).

Programs

Formula

G.f.: 2*(x^2+8x+1)/(1-x)^3.
From G. C. Greubel, May 20 2016: (Start)
E.g.f.: 2*(1 + 10*x + 5*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = 2*A062786(n+1). - R. J. Mathar, Jun 03 2016
Sum_{n>=0} 1/a(n) = Pi/(2*sqrt(5)) * tan(Pi/(2*sqrt(5))) (A350760). - Amiram Eldar, Jan 20 2022

A071176 Smallest k such that the concatenation of n and k is a square (decimal notation).

Original entry on oeis.org

6, 5, 6, 9, 29, 4, 29, 1, 61, 0, 56, 1, 69, 4, 21, 9, 64, 49, 6, 25, 16, 5, 104, 336, 6, 244, 225, 9, 16, 25, 36, 4, 64, 81, 344, 1, 21, 44, 69, 0, 209, 25, 56, 1, 369, 24, 61, 4, 284, 41, 84, 9, 29, 76, 225, 25, 6, 564, 29, 84, 504, 5, 504
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2002

Keywords

Comments

a(n) = 1 correspond to n = A132356(m), m > 0. - Bill McEachen, Aug 31 2023

Examples

			a(5) = 29 as 529 = 23^2 and 5'i is nonsquare for i<29, A071177(5)=23.
		

Crossrefs

Programs

  • Haskell
    import Data.List (findIndex)
    import Data.Maybe (fromJust)
    a071176 n = fromJust $ findIndex (== 1) $
                map (a010052 . read . (show n ++) . show) [0..]
    -- Reinhard Zumkeller, Aug 09 2011
    
  • Mathematica
    nksq[n_]:=Module[{idn=IntegerDigits[n],k=0},While[!IntegerQ[Sqrt[ FromDigits[Join[ idn,IntegerDigits[k]]]]],k++];k]; Array[nksq,70] (* Harvey P. Dale, Sep 28 2012 *)
  • PARI
    a(n)={if(issquare(10*n), 0, my(m=n, b=1); while(1, m*=10; my(r=(sqrtint(m+b-1)+1)^2-m); b*=10; if(rAndrew Howroyd, Jan 13 2023
    
  • Python
    from math import isqrt
    from sympy.ntheory.primetest import is_square
    def A071176(n):
        m = 10*n
        if is_square(m): return 0
        a = 1
        while (k:=(isqrt(a*(m+1)-1)+1)**2-m*a)>=10*a:
            a *= 10
        return k # Chai Wah Wu, Feb 15 2023

Formula

A000196(n . a(n)) = A071177(n) where "." stands for concatenation.

A273367 Numbers k such that 10*k+6 is a perfect square.

Original entry on oeis.org

1, 3, 19, 25, 57, 67, 115, 129, 193, 211, 291, 313, 409, 435, 547, 577, 705, 739, 883, 921, 1081, 1123, 1299, 1345, 1537, 1587, 1795, 1849, 2073, 2131, 2371, 2433, 2689, 2755, 3027, 3097, 3385, 3459, 3763, 3841, 4161, 4243, 4579
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033583 (perfect squares ending in 0 in base 10 with final 0 removed).

Programs

Formula

a(2n) = 10*n^2 - 8*n + 1.
a(2n+1) = 10*n^2 + 8*n + 1.
G.f.: (x^4+2x^3+14x^2+2x+1)/((1-x)^3*(1+x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - G. C. Greubel, May 20 2016

A219190 Numbers of the form k*(5*k+1), where k = 0,-1,1,-2,2,-3,3,...

Original entry on oeis.org

0, 4, 6, 18, 22, 42, 48, 76, 84, 120, 130, 174, 186, 238, 252, 312, 328, 396, 414, 490, 510, 594, 616, 708, 732, 832, 858, 966, 994, 1110, 1140, 1264, 1296, 1428, 1462, 1602, 1638, 1786, 1824, 1980, 2020, 2184, 2226, 2398, 2442, 2622, 2668, 2856, 2904, 3100
Offset: 1

Views

Author

Bruno Berselli, Nov 14 2012

Keywords

Comments

Equivalently, numbers m such that 20*m+1 is a square.
Also, integer values of h*(h+1)/5.
More generally, for the numbers of the form n*(k*n+1) with n in A001057, we have:
. generating function (offset 1): x^2*(k-1+2*x+(k-1)*x^2)/((1+x)^2*(1-x)^3);
. n-th term: b(n) = (2*k*n*(n-1)+(k-2)*(-1)^n*(2*n-1)+k-2)/8;
. first differences: (n-1)*((-1)^n*(k-2)+k)/2;
. b(2n+1)-b(2n) = 2*n (independent from k);
. (4*k)*b(n)+1 = (2*k*n+(k-2)*(-1)^n-k)^2/4.

Crossrefs

Subsequence of A011858.
Cf. A090771: square roots of 20*a(n)+1 (see the first comment).
Cf. numbers of the form n*(k*n+1) with n in A001057: k=0, A001057; k=1, A110660; k=2, A000217; k=3, A152749; k=4, A074378; k=5, this sequence; k=6, A036498; k=7, A219191; k=8, A154260.
Cf. similar sequences listed in A219257.

Programs

  • Magma
    k:=5; f:=func; [0] cat [f(n*m): m in [-1,1], n in [1..25]];
    
  • Magma
    I:=[0,4,6,18,22]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Mathematica
    Rest[Flatten[{# (5 # - 1), # (5 # + 1)} & /@ Range[0, 25]]]
    CoefficientList[Series[2 x (2 + x + 2 x^2) / ((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,4,6,18,22},50] (* Harvey P. Dale, Jan 21 2015 *)

Formula

G.f.: 2*x^2*(2 + x + 2*x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = (10*n*(n-1) + 3*(-1)^n*(2*n - 1) + 3)/8.
a(n) = 2*A057569(n) = A008851(n+1)*A047208(n)/5.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Harvey P. Dale, Jan 21 2015
Sum_{n>=2} 1/a(n) = 5 - sqrt(1+2/sqrt(5))*Pi. - Amiram Eldar, Mar 15 2022
a(n) = A132356(n-1)/2, n >= 1. - Bernard Schott, Mar 15 2022

A273365 Numbers k such that 10*k+4 is a perfect square.

Original entry on oeis.org

0, 6, 14, 32, 48, 78, 102, 144, 176, 230, 270, 336, 384, 462, 518, 608, 672, 774, 846, 960, 1040, 1166, 1254, 1392, 1488, 1638, 1742, 1904, 2016, 2190, 2310, 2496, 2624, 2822, 2958, 3168, 3312, 3534, 3686, 3920, 4080, 4326, 4494
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033583 (perfect squares ending in 0 in base 10 with final 0 removed).

Programs

  • Mathematica
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 6, 14, 32, 48}, 50] (* G. C. Greubel, May 21 2016 *)
    Select[Range[0,5000],IntegerQ[Sqrt[10#+4]]&] (* Harvey P. Dale, Apr 19 2019 *)
  • PARI
    is(n)=issquare(10*n+4) \\ Charles R Greathouse IV, Jan 31 2017

Formula

a(2n) = 10*n^2 + 4*n, n>=0.
a(2n-1) = 10*n^2 - 4*n, n>=1.
G.f.: 2*x*(3*x^2+4x+3)/((1-x)^3*(1+x)^2).
From G. C. Greubel, May 21 2016: (Start)
E.g.f.: (1/2)*((5*x^2 + 11*x)*cosh(x) + (5*x^2 + 9*x + 1)*sinh(x)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). (End)

A273368 Numbers k such that 10*k+9 is a perfect square.

Original entry on oeis.org

0, 4, 16, 28, 52, 72, 108, 136, 184, 220, 280, 324, 396, 448, 532, 592, 688, 756, 864, 940, 1060, 1144, 1276, 1368, 1512, 1612, 1768, 1876, 2044, 2160, 2340, 2464, 2656, 2788, 2992, 3132, 3348, 3496, 3724, 3880, 4120, 4284, 4536
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033583 (perfect squares ending in 0 in base 10 with final 0 removed).

Programs

  • Mathematica
    CoefficientList[Series[4*x*(x^2+3x+1)/((1-x)^3*(1+x)^2), {x,0,50}], x] (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {0, 4, 16, 28, 52}, 50] (* G. C. Greubel, May 20 2016 *)
  • PARI
    is(n)=issquare(10*n+9) \\ Charles R Greathouse IV, Jan 31 2017

Formula

a(2n) = 10*n^2 + 6*n, n>=0.
a(2n-1) = 10*n^2 - 6*n, n>=1.
G.f.: 4*x*(x^2+3x+1)/((1-x)^3*(1+x)^2).
From G. C. Greubel, May 21 2016: (Start)
E.g.f.: (1/2)*((5*x^2 + 9*x)*cosh(x) + (5*x^2 + 11*x -1)*sinh(x)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). (End)
a(n) = 4*A085787(n). - R. J. Mathar, Jun 03 2016

A220082 Numbers k such that 10*k-1 is a square.

Original entry on oeis.org

1, 5, 17, 29, 53, 73, 109, 137, 185, 221, 281, 325, 397, 449, 533, 593, 689, 757, 865, 941, 1061, 1145, 1277, 1369, 1513, 1613, 1769, 1877, 2045, 2161, 2341, 2465, 2657, 2789, 2993, 3133, 3349, 3497, 3725, 3881, 4121, 4285, 4537, 4709, 4973, 5153, 5429, 5617, 5905
Offset: 1

Views

Author

Bruno Berselli, Dec 05 2012

Keywords

Comments

Equivalently, numbers of the form m*(10*m+6)+1, where m=0,-1,1,-2,2,-3,3,...

Crossrefs

Cf. A085787, A132356 (numbers n such that 10*n+1 is a square).
Cf. numbers n such that k*n-1 is a square: A002522 (k=1), A001844 (k=2), A062317 (k=5).

Programs

  • Magma
    [n: n in [1..6000] | IsSquare(10*n-1)]; /* or (see the first comment): */ [1] cat [m*(10*m+6)+1: m in [-n,n], n in [1..24]];
    
  • Magma
    I:=[1,5,17,29,53]; [n le 5 select I[n] else Self(n-1) +2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Aug 18 2013
  • Maple
    A220082:=proc(q)
    local n;
    for n from 1 to q do if type(sqrt(10*n-1), integer) then print(n);
    fi; od; end:
    A220082(1000); # Paolo P. Lava, Feb 19 2013
  • Mathematica
    Select[Range[0, 6000], IntegerQ[Sqrt[10 # - 1]] &]
    CoefficientList[Series[(1 + 4 x + 10 x^2 + 4 x^3 + x^4) / ((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{1,5,17,29,53},50] (* Harvey P. Dale, Nov 19 2023 *)

Formula

G.f.: x*(1+4*x+10*x^2+4*x^3+x^4)/((1+x)^2*(1-x)^3).
a(n) = a(-n+1) = (10*n*(n-1)-(2*n-1)*(-1)^n+3)/4.
For the definition: 10*a(n)-1 = ((10*n-(-1)^n-5)/2)^2.
a(n) = A212570(n)-A212570(n-1) = 4*A085787(n-1)+1 = A132356(n-1)-(2*n-1)*(-1)^n.
Showing 1-10 of 12 results. Next