cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A273367 Numbers k such that 10*k+6 is a perfect square.

Original entry on oeis.org

1, 3, 19, 25, 57, 67, 115, 129, 193, 211, 291, 313, 409, 435, 547, 577, 705, 739, 883, 921, 1081, 1123, 1299, 1345, 1537, 1587, 1795, 1849, 2073, 2131, 2371, 2433, 2689, 2755, 3027, 3097, 3385, 3459, 3763, 3841, 4161, 4243, 4579
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033583 (perfect squares ending in 0 in base 10 with final 0 removed).

Programs

Formula

a(2n) = 10*n^2 - 8*n + 1.
a(2n+1) = 10*n^2 + 8*n + 1.
G.f.: (x^4+2x^3+14x^2+2x+1)/((1-x)^3*(1+x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - G. C. Greubel, May 20 2016

A273365 Numbers k such that 10*k+4 is a perfect square.

Original entry on oeis.org

0, 6, 14, 32, 48, 78, 102, 144, 176, 230, 270, 336, 384, 462, 518, 608, 672, 774, 846, 960, 1040, 1166, 1254, 1392, 1488, 1638, 1742, 1904, 2016, 2190, 2310, 2496, 2624, 2822, 2958, 3168, 3312, 3534, 3686, 3920, 4080, 4326, 4494
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033583 (perfect squares ending in 0 in base 10 with final 0 removed).

Programs

  • Mathematica
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 6, 14, 32, 48}, 50] (* G. C. Greubel, May 21 2016 *)
    Select[Range[0,5000],IntegerQ[Sqrt[10#+4]]&] (* Harvey P. Dale, Apr 19 2019 *)
  • PARI
    is(n)=issquare(10*n+4) \\ Charles R Greathouse IV, Jan 31 2017

Formula

a(2n) = 10*n^2 + 4*n, n>=0.
a(2n-1) = 10*n^2 - 4*n, n>=1.
G.f.: 2*x*(3*x^2+4x+3)/((1-x)^3*(1+x)^2).
From G. C. Greubel, May 21 2016: (Start)
E.g.f.: (1/2)*((5*x^2 + 11*x)*cosh(x) + (5*x^2 + 9*x + 1)*sinh(x)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). (End)

A273368 Numbers k such that 10*k+9 is a perfect square.

Original entry on oeis.org

0, 4, 16, 28, 52, 72, 108, 136, 184, 220, 280, 324, 396, 448, 532, 592, 688, 756, 864, 940, 1060, 1144, 1276, 1368, 1512, 1612, 1768, 1876, 2044, 2160, 2340, 2464, 2656, 2788, 2992, 3132, 3348, 3496, 3724, 3880, 4120, 4284, 4536
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033583 (perfect squares ending in 0 in base 10 with final 0 removed).

Programs

  • Mathematica
    CoefficientList[Series[4*x*(x^2+3x+1)/((1-x)^3*(1+x)^2), {x,0,50}], x] (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {0, 4, 16, 28, 52}, 50] (* G. C. Greubel, May 20 2016 *)
  • PARI
    is(n)=issquare(10*n+9) \\ Charles R Greathouse IV, Jan 31 2017

Formula

a(2n) = 10*n^2 + 6*n, n>=0.
a(2n-1) = 10*n^2 - 6*n, n>=1.
G.f.: 4*x*(x^2+3x+1)/((1-x)^3*(1+x)^2).
From G. C. Greubel, May 21 2016: (Start)
E.g.f.: (1/2)*((5*x^2 + 9*x)*cosh(x) + (5*x^2 + 11*x -1)*sinh(x)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). (End)
a(n) = 4*A085787(n). - R. J. Mathar, Jun 03 2016

A321383 Numbers k such that the concatenation k21 is a square.

Original entry on oeis.org

1, 15, 37, 79, 123, 193, 259, 357, 445, 571, 681, 835, 967, 1149, 1303, 1513, 1689, 1927, 2125, 2391, 2611, 2905, 3147, 3469, 3733, 4083, 4369, 4747, 5055, 5461, 5791, 6225, 6577, 7039, 7413, 7903, 8299, 8817, 9235, 9781, 10221, 10795, 11257, 11859, 12343, 12973, 13479
Offset: 1

Views

Author

Bruno Berselli, Nov 08 2018

Keywords

Crossrefs

Cf. A008805.
Numbers k such that the concatenation km is a square: A132356 (m = 1), A273365 (m = 4), A273366 (m = 5), A273367 (m = 6), A273368 (m = 9); missing sequence for m = 16; this sequence for m = 21; missing sequence for m = 24; A002378 (m = 25).

Programs

  • GAP
    List([1..50], n -> (50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8);
    
  • Julia
    [div((50*(n-1)*n+3*(2*n-1)*(-1)^n+11), 8) for n in 1:50] |> println
  • Magma
    [(50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8: n in [1..50]];
    
  • Mathematica
    Table[(50 (n - 1) n + 3 (2 n - 1) (-1)^n + 11)/8, {n, 1, 50}]
  • Maxima
    makelist((50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8, n, 1, 50);
    
  • PARI
    vector(50, n, nn; (50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8)
    
  • PARI
    Vec(x*(1 + 14*x + 20*x^2 + 14*x^3 + x^4) / ((1 - x)^3*(1 + x)^2) + O(x^50)) \\ Colin Barker, Nov 12 2018
    
  • Python
    [(50*(n-1)*n+3*(2*n-1)*(-1)**n+11)/8 for n in range(1, 50)]
    
  • Sage
    [(50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8 for n in (1..50)]
    

Formula

G.f.: x*(1 + 14*x + 20*x^2 + 14*x^3 + x^4)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = 2*a(n-2) - a(n-4) + 50.
a(n) = (50*(n - 1)*n + 3*(2*n - 1)*(-1)^n + 11)/8. Therefore:
a(n) = (25*n^2 - 22*n + 4)/4 for even n;
a(n) = (25*n^2 - 28*n + 7)/4 for odd n.

A332495 a(n-2) = a(n-6) + 5*(1+2*n) with a(0)=0, a(1)=2, a(2)=7, a(3)=15 for n>=4.

Original entry on oeis.org

0, 2, 7, 15, 25, 37, 52, 70, 90, 112, 137, 165, 195, 227, 262, 300, 340, 382, 427, 475, 525, 577, 632, 690, 750, 812, 877, 945, 1015, 1087, 1162, 1240, 1320, 1402, 1487, 1575, 1665, 1757, 1852, 1950, 2050, 2152, 2257
Offset: 0

Views

Author

Paul Curtz, Feb 14 2020

Keywords

Comments

a(-2)=2, a(-1)=0. 4 evens followed by 4 odds.
Last digit is only 0, 2, 5, 7.
The vertical spoke S-N of the pentagonal spiral for A004526.
37
37 25 25
36 24 15 15 26
36 24 14 7 8 16 26
35 23 14 7 2 3 8 16 27
35 23 13 6 2 0 0 3 9 17 27
34 22 13 6 1 1 4 9 17 28
34 22 12 5 5 4 10 18 28
33 21 12 11 11 10 18 29
33 21 20 20 19 19 29
32 32 31 31 30 30
Rank of multiples of 10: 0, 7, 8, 15, 16, ... = A047521. Compare to A154260 in the formula.

Crossrefs

Cf. A004526, A033429, A062786, A168668, A135706, A147874, 2*A147875 (all in the spiral).

Programs

  • Mathematica
    CoefficientList[Series[x (2 + x + 2 x^2)/((1 - x)^3*(1 + x^2)), {x, 0, 42}], x] (* Michael De Vlieger, Feb 14 2020 *)
  • PARI
    concat(0, Vec(x*(2 + x + 2*x^2) / ((1 - x)^3*(1 + x^2)) + O(x^40))) \\ Colin Barker, Feb 14 2020

Formula

a(-1-n) = a(n).
a(2*n) + a(1+2*n) = 2, 22, 62, ... = A273366(n).
Second differences give the sequence of period 4: repeat [3, 3, 2, 2].
From Colin Barker, Feb 14 2020: (Start)
G.f.: x*(2 + x + 2*x^2) / ((1 - x)^3*(1 + x^2)).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) for n>4.
(End)
Multiples of 10: 10*(0, 7, 9, 30, 34, ... = A154260).
4*a(n) = A087960(n) +5*n -1 +5*n^2. - R. J. Mathar, Feb 28 2020

A350760 Decimal expansion of Pi/(2*sqrt(5)) * tan(Pi/(2*sqrt(5))).

Original entry on oeis.org

5, 9, 4, 6, 7, 8, 1, 2, 3, 5, 3, 5, 2, 7, 8, 5, 1, 9, 1, 6, 8, 1, 1, 4, 2, 6, 9, 7, 6, 0, 5, 5, 4, 9, 3, 7, 6, 0, 3, 6, 3, 9, 4, 6, 9, 6, 1, 0, 2, 4, 2, 4, 3, 7, 9, 0, 5, 1, 1, 2, 5, 6, 8, 9, 5, 7, 9, 4, 5, 2, 5, 6, 3, 2, 6, 6, 1, 9, 0, 1, 5, 8, 8, 8, 4, 5, 2, 7, 3, 8, 9, 2, 6, 1, 2, 6, 0, 2, 5, 5, 2, 4, 3, 1, 0
Offset: 0

Views

Author

Amiram Eldar, Jan 14 2022

Keywords

Examples

			0.59467812353527851916811426976055493760363946961024...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Pi/(2*Sqrt[5]))*Tan[Pi/(2*Sqrt[5])], 10, 100][[1]]

Formula

Equals Sum_{n>=1} zeta(2*n)*Fibonacci(2*n)/5^n (Frontczak, 2020).
Equals -1 + Sum_{n>=1} zeta(2*n)*Lucas(2*n)/5^n (Frontczak, 2020).
Equals Sum_{n>=0} 1/A273366(n).
Showing 1-6 of 6 results.