cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A273366 a(n) = 10*n^2 + 10*n + 2.

Original entry on oeis.org

2, 22, 62, 122, 202, 302, 422, 562, 722, 902, 1102, 1322, 1562, 1822, 2102, 2402, 2722, 3062, 3422, 3802, 4202, 4622, 5062, 5522, 6002, 6502, 7022, 7562, 8122, 8702, 9302, 9922, 10562, 11222, 11902, 12602, 13322, 14062, 14822, 15602
Offset: 0

Views

Author

Keywords

Comments

These are the numbers k such that 10*k+5 is a perfect square.

Crossrefs

Cf. A033583 (perfect squares ending in 0 in base 10 with final 0 removed).

Programs

Formula

G.f.: 2*(x^2+8x+1)/(1-x)^3.
From G. C. Greubel, May 20 2016: (Start)
E.g.f.: 2*(1 + 10*x + 5*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = 2*A062786(n+1). - R. J. Mathar, Jun 03 2016
Sum_{n>=0} 1/a(n) = Pi/(2*sqrt(5)) * tan(Pi/(2*sqrt(5))) (A350760). - Amiram Eldar, Jan 20 2022

A273367 Numbers k such that 10*k+6 is a perfect square.

Original entry on oeis.org

1, 3, 19, 25, 57, 67, 115, 129, 193, 211, 291, 313, 409, 435, 547, 577, 705, 739, 883, 921, 1081, 1123, 1299, 1345, 1537, 1587, 1795, 1849, 2073, 2131, 2371, 2433, 2689, 2755, 3027, 3097, 3385, 3459, 3763, 3841, 4161, 4243, 4579
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033583 (perfect squares ending in 0 in base 10 with final 0 removed).

Programs

Formula

a(2n) = 10*n^2 - 8*n + 1.
a(2n+1) = 10*n^2 + 8*n + 1.
G.f.: (x^4+2x^3+14x^2+2x+1)/((1-x)^3*(1+x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - G. C. Greubel, May 20 2016

A273365 Numbers k such that 10*k+4 is a perfect square.

Original entry on oeis.org

0, 6, 14, 32, 48, 78, 102, 144, 176, 230, 270, 336, 384, 462, 518, 608, 672, 774, 846, 960, 1040, 1166, 1254, 1392, 1488, 1638, 1742, 1904, 2016, 2190, 2310, 2496, 2624, 2822, 2958, 3168, 3312, 3534, 3686, 3920, 4080, 4326, 4494
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033583 (perfect squares ending in 0 in base 10 with final 0 removed).

Programs

  • Mathematica
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 6, 14, 32, 48}, 50] (* G. C. Greubel, May 21 2016 *)
    Select[Range[0,5000],IntegerQ[Sqrt[10#+4]]&] (* Harvey P. Dale, Apr 19 2019 *)
  • PARI
    is(n)=issquare(10*n+4) \\ Charles R Greathouse IV, Jan 31 2017

Formula

a(2n) = 10*n^2 + 4*n, n>=0.
a(2n-1) = 10*n^2 - 4*n, n>=1.
G.f.: 2*x*(3*x^2+4x+3)/((1-x)^3*(1+x)^2).
From G. C. Greubel, May 21 2016: (Start)
E.g.f.: (1/2)*((5*x^2 + 11*x)*cosh(x) + (5*x^2 + 9*x + 1)*sinh(x)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). (End)

A321383 Numbers k such that the concatenation k21 is a square.

Original entry on oeis.org

1, 15, 37, 79, 123, 193, 259, 357, 445, 571, 681, 835, 967, 1149, 1303, 1513, 1689, 1927, 2125, 2391, 2611, 2905, 3147, 3469, 3733, 4083, 4369, 4747, 5055, 5461, 5791, 6225, 6577, 7039, 7413, 7903, 8299, 8817, 9235, 9781, 10221, 10795, 11257, 11859, 12343, 12973, 13479
Offset: 1

Views

Author

Bruno Berselli, Nov 08 2018

Keywords

Crossrefs

Cf. A008805.
Numbers k such that the concatenation km is a square: A132356 (m = 1), A273365 (m = 4), A273366 (m = 5), A273367 (m = 6), A273368 (m = 9); missing sequence for m = 16; this sequence for m = 21; missing sequence for m = 24; A002378 (m = 25).

Programs

  • GAP
    List([1..50], n -> (50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8);
    
  • Julia
    [div((50*(n-1)*n+3*(2*n-1)*(-1)^n+11), 8) for n in 1:50] |> println
  • Magma
    [(50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8: n in [1..50]];
    
  • Mathematica
    Table[(50 (n - 1) n + 3 (2 n - 1) (-1)^n + 11)/8, {n, 1, 50}]
  • Maxima
    makelist((50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8, n, 1, 50);
    
  • PARI
    vector(50, n, nn; (50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8)
    
  • PARI
    Vec(x*(1 + 14*x + 20*x^2 + 14*x^3 + x^4) / ((1 - x)^3*(1 + x)^2) + O(x^50)) \\ Colin Barker, Nov 12 2018
    
  • Python
    [(50*(n-1)*n+3*(2*n-1)*(-1)**n+11)/8 for n in range(1, 50)]
    
  • Sage
    [(50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8 for n in (1..50)]
    

Formula

G.f.: x*(1 + 14*x + 20*x^2 + 14*x^3 + x^4)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = 2*a(n-2) - a(n-4) + 50.
a(n) = (50*(n - 1)*n + 3*(2*n - 1)*(-1)^n + 11)/8. Therefore:
a(n) = (25*n^2 - 22*n + 4)/4 for even n;
a(n) = (25*n^2 - 28*n + 7)/4 for odd n.
Showing 1-4 of 4 results.