A220128 1 followed by period 6: (1, 3, 2, 3, 1, 4) repeated; offset 0.
1, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3
Offset: 0
Examples
a(6) = 4, because there are 4 tilings of a 6 X 3 rectangle using integer-sided rectangular tiles of area 6: ._._._. .___._. ._.___. ._____. | | | | | | | | | | | | | | | | | | | | | | |_____| | | | | |___| | | |___| | | | | | | | | | | | | |_____| | | | | | | | | | | | | |_|_|_| |___|_| |_|___| |_____|
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-1,0,1,1).
Crossrefs
Row n=3 of A220122.
Programs
-
Magma
[1] cat &cat [[1, 3, 2, 3, 1, 4]^^20]; // Wesley Ivan Hurt, Jun 20 2016
-
Maple
a:=n-> `if`(n=0, 1, [4, 1, 3, 2, 3, 1][irem(n, 6)+1]): seq(a(n), n=0..100);
-
Mathematica
PadRight[{1}, 120, {4,1,3,2,3,1}] (* Harvey P. Dale, Jan 06 2016 *)
Formula
G.f.: (-3*x^4-4*x^3-4*x^2-2*x-1) / (x^4+x^3-x-1).
From Wesley Ivan Hurt, Jun 20 2016: (Start)
a(n) + a(n-1) = a(n-3) + a(n-4) for n>4.
a(0) = 1, a(n) = (7 + 3*cos(n*Pi) + 2*cos(2*n*Pi/3))/3 for n>0. (End)
E.g.f.: 2*(-9/2 + cos(sqrt(3)*x/2)*exp(-x/2) + 2*sinh(x) + 5*cosh(x))/3. - Ilya Gutkovskiy, Jun 21 2016
Comments