A326709 Squares of composites such that beta(m) = (tau(m) - 3)/2 where beta(m) = A220136(m) is the number of Brazilian representations of m and tau(m) = A000005(m) is the number of divisors of m.
16, 36, 64, 81, 100, 144, 196, 225, 256, 324, 441, 484, 576, 625, 676, 729, 784, 900, 1024, 1089, 1156, 1225, 1296, 1444, 1764, 1936, 2025, 2116, 2304, 2500, 2601, 2704, 2916, 3025, 3136, 3249, 3364, 3600, 3844, 3969, 4096, 4225, 4356, 4624, 4761, 4900, 5184, 5476, 5625
Offset: 1
Examples
a(1) = 16: tau(16) = 5 and beta(16) = 1 with 16 = 4^2 = 22_7. a(3) = 64: tau(64) = 7 and beta(64) = 2 with 64 = 8^2 = 44_15 = 22_31. a(5) = 100: tau(100) = 9 and beta(100) = 3 with 100 = 10^2 = 55_19 = 44_24 = 22_49.
Crossrefs
Programs
-
Mathematica
brazQ[n_, b_] := Length@Union@IntegerDigits[n, b] == 1; beta[n_] := Sum[Boole @ brazQ[n, b], {b, 2, n - 2}]; aQ[n_] := beta[n] == (DivisorSigma[0, n] - 3)/2; Select[Select[Range[75], CompositeQ]^2, aQ] (* Amiram Eldar, Sep 06 2019 *)
Comments