cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A084942 Enneagorials: n-th polygorial for k=9.

Original entry on oeis.org

1, 1, 9, 216, 9936, 745200, 82717200, 12738448800, 2598643555200, 678245967907200, 220429939569840000, 87290256069656640000, 41375581377017247360000, 23128949989752641274240000, 15056946443328969469530240000, 11292709832496727102147680000000, 9666559616617198399438414080000000
Offset: 0

Views

Author

Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003

Keywords

Crossrefs

Programs

  • Maple
    a := n->n!/2^n*product(7*i+2,i=0..n-1); [seq(a(j),j=0..30)];
  • Mathematica
    polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[9, #] &, 16, 0] (* Robert G. Wilson v, Dec 26 2016 *)
  • PARI
    a(n)=n!/2^n*prod(i=1,n,7*i-5) \\ Charles R Greathouse IV, Dec 13 2016

Formula

a(n) = polygorial(n, 9) = (A000142(n)/A000079(n))*A084947(n) = (n!/2^n)*Product_{i=0..n-1} (7*i+2) = (n!/2^n)*7^n*Pochhammer(2/7, n) = (n!/2^n)*7^n*Gamma(n+2/7)/Gamma(2/7).
D-finite with recurrence 2*a(n) = n*(7*n-5)*a(n-1). - R. J. Mathar, Mar 12 2019
a(n) ~ 7^n * n^(2*n + 2/7) * Pi /(Gamma(2/7) * 2^(n-1) * exp(2*n)). - Amiram Eldar, Aug 28 2025

A220086 Decimal expansion of Gamma(1/7).

Original entry on oeis.org

6, 5, 4, 8, 0, 6, 2, 9, 4, 0, 2, 4, 7, 8, 2, 4, 4, 3, 7, 7, 1, 4, 0, 9, 3, 3, 4, 9, 4, 2, 8, 9, 9, 6, 2, 6, 2, 6, 2, 1, 1, 3, 5, 1, 8, 7, 3, 8, 4, 1, 3, 5, 1, 4, 8, 9, 4, 0, 1, 6, 8, 8, 1, 9, 1, 4, 8, 5, 7, 6, 2, 0, 4, 7, 3, 8, 2, 3, 9, 1, 3, 7, 7, 9, 0, 5, 6
Offset: 1

Views

Author

Bruno Berselli, Dec 12 2012

Keywords

Comments

(A220086/A220605)*(A220607/A220606) = A160389, which is the case n=7 of (Gamma(1/n)/Gamma(2/n))*(Gamma((n-1)/n)/Gamma((n-2)/n)) = 2*cos(Pi/n).
A220086*A220605*A220606*A220607*A220608*A220609 = (2*Pi)^3/sqrt(7), which is the case n=7 of product(Gamma(i/n), i=1..n-1) = sqrt((2*Pi)^(n-1)/n) (see also the second link to Wikipedia).
Continued fraction expansion: 6, 1, 1, 4, 1, 2, 2, 1, 5, 1, 10, 7, 1,...

Examples

			6.5480629402478244377140933494289962626211351873841351...
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(1/7); // G. C. Greubel, Mar 10 2018
  • Mathematica
    RealDigits[Gamma[1/7], 10, 90][[1]]
  • Maxima
    fpprec:90; ev(bfloat(gamma(1/7)));
    
  • PARI
    default(realprecision, 100); gamma(1/7) \\ G. C. Greubel, Mar 10 2018
    

Formula

Equals Pi * csc(Pi/7) / A220607, where csc is the cosecant function.
(A220086/A220605) * (A220607/A220606) = A160389, which is the case n=7 of (Gamma(1/n)/Gamma(2/n))*(Gamma((n-1)/n)/Gamma((n-2)/n)) = 2*cos(Pi/n).
A220086*A220605*A220606*A220607*A220608*A220609 = (2*Pi)^3/sqrt(7), which is the case n=7 of product(Gamma(i/n), i=1..n-1) = sqrt((2*Pi)^(n-1)/n) (see also the second link to Wikipedia).

A020078 a(n) = floor( Gamma(n+2/7)/Gamma(2/7) ).

Original entry on oeis.org

1, 0, 0, 0, 2, 11, 62, 392, 2862, 23714, 220204, 2264965, 25561751, 314044378, 4172303889, 59604341272, 911094930876, 14837831731419, 256482519928831, 4689966078698628, 90449345803473558, 1834829586299035048
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Gamma(n+2/7)/Gamma(2/7)): n in [0..25]]; // G. C. Greubel, Nov 17 2019
    
  • Maple
    Digits := 64:f := proc(n,x) trunc(GAMMA(n+x)/GAMMA(x)); end;
    seq(floor(pochhammer(2/7,n)), n = 0..25); # G. C. Greubel, Nov 17 2019
  • Mathematica
    Floor[Pochhammer[2/7, Range[0, 25]]] (* G. C. Greubel, Nov 17 2019 *)
  • PARI
    vector(26, n, my(x=2/7); gamma(n-1+x)\gamma(x) ) \\ G. C. Greubel, Nov 17 2019
    
  • Sage
    [floor(rising_factorial(2/7, n)) for n in (0..25)] # G. C. Greubel, Nov 17 2019

A220606 Decimal expansion of Gamma(5/7).

Original entry on oeis.org

1, 2, 7, 5, 9, 9, 2, 6, 7, 5, 4, 9, 3, 4, 4, 4, 0, 5, 8, 4, 8, 5, 3, 0, 5, 6, 0, 7, 7, 8, 9, 8, 7, 4, 9, 4, 8, 4, 5, 4, 5, 8, 8, 9, 9, 2, 9, 1, 1, 0, 5, 1, 9, 1, 6, 2, 2, 8, 1, 4, 6, 3, 7, 6, 2, 0, 7, 1, 0, 1, 4, 7, 6, 1, 2, 3, 9, 2, 9, 8, 5, 1, 6, 3, 1, 0, 0
Offset: 1

Views

Author

Bruno Berselli, Dec 17 2012

Keywords

Comments

See the second comment of A220086.

Examples

			1.2759926754934440584853056077898749484545889929110519...
		

Crossrefs

Cf. A160389 (see the first comment of A220086).

Programs

  • Mathematica
    RealDigits[Gamma[5/7], 10, 90][[1]]
  • Maxima
    fpprec:90; ev(bfloat(gamma(5/7)));

Formula

Equals Pi*sec(3*Pi/14)/A220605.

A020123 Ceiling of Gamma(n+2/7)/Gamma(2/7).

Original entry on oeis.org

1, 1, 1, 1, 3, 12, 63, 393, 2863, 23715, 220205, 2264966, 25561752, 314044379, 4172303890, 59604341273, 911094930877, 14837831731420, 256482519928832, 4689966078698629, 90449345803473559, 1834829586299035049
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A220605.

Programs

  • Maple
    Digits := 64:f := proc(n,x) ceil(GAMMA(n+x)/GAMMA(x)); end;
  • Mathematica
    Table[Ceiling[Gamma[n+2/7]/Gamma[2/7]],{n,0,30}] (* Harvey P. Dale, Nov 24 2022 *)

Formula

a(n) ~ sqrt(2*Pi)*n^(n-3/14)*exp(-n)/Gamma(2/7). - Robert Israel, Jan 02 2017

A020033 Nearest integer to Gamma(n + 2/7)/Gamma(2/7).

Original entry on oeis.org

1, 0, 0, 1, 3, 12, 62, 393, 2862, 23714, 220205, 2264965, 25561752, 314044379, 4172303889, 59604341272, 911094930877, 14837831731420, 256482519928831, 4689966078698629, 90449345803473559, 1834829586299035049
Offset: 0

Views

Author

Keywords

Comments

Gamma(n + 2/7)/Gamma(2/7) = 1, 2/7, 18/49, 288/343, 6624/2401, 198720/16807, 7352640/117649, 323516160/823543, ... - R. J. Mathar, Sep 04 2016

Crossrefs

Programs

  • Maple
    Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
Showing 1-6 of 6 results.