A220086 Decimal expansion of Gamma(1/7).
6, 5, 4, 8, 0, 6, 2, 9, 4, 0, 2, 4, 7, 8, 2, 4, 4, 3, 7, 7, 1, 4, 0, 9, 3, 3, 4, 9, 4, 2, 8, 9, 9, 6, 2, 6, 2, 6, 2, 1, 1, 3, 5, 1, 8, 7, 3, 8, 4, 1, 3, 5, 1, 4, 8, 9, 4, 0, 1, 6, 8, 8, 1, 9, 1, 4, 8, 5, 7, 6, 2, 0, 4, 7, 3, 8, 2, 3, 9, 1, 3, 7, 7, 9, 0, 5, 6
Offset: 1
Examples
6.5480629402478244377140933494289962626211351873841351...
Links
Programs
-
Magma
SetDefaultRealField(RealField(100)); Gamma(1/7); // G. C. Greubel, Mar 10 2018
-
Mathematica
RealDigits[Gamma[1/7], 10, 90][[1]]
-
Maxima
fpprec:90; ev(bfloat(gamma(1/7)));
-
PARI
default(realprecision, 100); gamma(1/7) \\ G. C. Greubel, Mar 10 2018
Formula
Equals Pi * csc(Pi/7) / A220607, where csc is the cosecant function.
(A220086/A220605) * (A220607/A220606) = A160389, which is the case n=7 of (Gamma(1/n)/Gamma(2/n))*(Gamma((n-1)/n)/Gamma((n-2)/n)) = 2*cos(Pi/n).
Comments