cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A220086 Decimal expansion of Gamma(1/7).

Original entry on oeis.org

6, 5, 4, 8, 0, 6, 2, 9, 4, 0, 2, 4, 7, 8, 2, 4, 4, 3, 7, 7, 1, 4, 0, 9, 3, 3, 4, 9, 4, 2, 8, 9, 9, 6, 2, 6, 2, 6, 2, 1, 1, 3, 5, 1, 8, 7, 3, 8, 4, 1, 3, 5, 1, 4, 8, 9, 4, 0, 1, 6, 8, 8, 1, 9, 1, 4, 8, 5, 7, 6, 2, 0, 4, 7, 3, 8, 2, 3, 9, 1, 3, 7, 7, 9, 0, 5, 6
Offset: 1

Views

Author

Bruno Berselli, Dec 12 2012

Keywords

Comments

(A220086/A220605)*(A220607/A220606) = A160389, which is the case n=7 of (Gamma(1/n)/Gamma(2/n))*(Gamma((n-1)/n)/Gamma((n-2)/n)) = 2*cos(Pi/n).
A220086*A220605*A220606*A220607*A220608*A220609 = (2*Pi)^3/sqrt(7), which is the case n=7 of product(Gamma(i/n), i=1..n-1) = sqrt((2*Pi)^(n-1)/n) (see also the second link to Wikipedia).
Continued fraction expansion: 6, 1, 1, 4, 1, 2, 2, 1, 5, 1, 10, 7, 1,...

Examples

			6.5480629402478244377140933494289962626211351873841351...
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(1/7); // G. C. Greubel, Mar 10 2018
  • Mathematica
    RealDigits[Gamma[1/7], 10, 90][[1]]
  • Maxima
    fpprec:90; ev(bfloat(gamma(1/7)));
    
  • PARI
    default(realprecision, 100); gamma(1/7) \\ G. C. Greubel, Mar 10 2018
    

Formula

Equals Pi * csc(Pi/7) / A220607, where csc is the cosecant function.
(A220086/A220605) * (A220607/A220606) = A160389, which is the case n=7 of (Gamma(1/n)/Gamma(2/n))*(Gamma((n-1)/n)/Gamma((n-2)/n)) = 2*cos(Pi/n).
A220086*A220605*A220606*A220607*A220608*A220609 = (2*Pi)^3/sqrt(7), which is the case n=7 of product(Gamma(i/n), i=1..n-1) = sqrt((2*Pi)^(n-1)/n) (see also the second link to Wikipedia).

A020076 a(n) = floor( Gamma(n+4/7)/Gamma(4/7) ).

Original entry on oeis.org

1, 0, 0, 2, 8, 37, 210, 1380, 10450, 89574, 857351, 9063434, 104876887, 1318452295, 17893281147, 260730668150, 4059948975490, 67279154450985, 1182190856781603, 21954973054515489, 429690186924088870
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Gamma(n+4/7)/Gamma(4/7)): n in [0..25]]; // G. C. Greubel, Nov 17 2019
    
  • Maple
    Digits := 64:f := proc(n,x) trunc(GAMMA(n+x)/GAMMA(x)); end;
    seq(floor(pochhammer(4/7,n)), n = 0..25); # G. C. Greubel, Nov 17 2019
  • Mathematica
    Floor[Pochhammer[4/7, Range[0, 25]]] (* G. C. Greubel, Nov 17 2019 *)
  • PARI
    vector(26, n, my(x=4/7); gamma(n-1+x)\gamma(x) ) \\ G. C. Greubel, Nov 17 2019
    
  • Sage
    [floor(rising_factorial(4/7, n)) for n in (0..25)] # G. C. Greubel, Nov 17 2019

A220608 Decimal expansion of Gamma(3/7).

Original entry on oeis.org

2, 0, 6, 7, 5, 1, 1, 7, 2, 6, 5, 6, 0, 2, 2, 9, 3, 5, 3, 0, 2, 4, 6, 1, 2, 4, 0, 6, 3, 0, 8, 8, 2, 6, 9, 4, 3, 5, 5, 9, 2, 1, 4, 2, 1, 1, 4, 9, 2, 3, 8, 7, 5, 2, 8, 0, 5, 0, 7, 1, 7, 5, 9, 0, 2, 3, 4, 6, 0, 3, 3, 9, 0, 2, 9, 3, 9, 7, 6, 7, 2, 8, 5, 1, 0, 6, 8
Offset: 1

Views

Author

Bruno Berselli, Dec 17 2012

Keywords

Comments

See the second comment of A220086.

Examples

			2.0675117265602293530246124063088269435592142114923875...
		

Programs

  • Mathematica
    RealDigits[Gamma[3/7], 10, 90][[1]]
  • Maxima
    fpprec:90; ev(bfloat(gamma(3/7)));

Formula

Equals Pi*sec(Pi/14)/A220609.

A020121 Ceiling of GAMMA(n+4/7)/GAMMA(4/7).

Original entry on oeis.org

1, 1, 1, 3, 9, 38, 211, 1381, 10451, 89575, 857352, 9063435, 104876888, 1318452296, 17893281148, 260730668151, 4059948975491, 67279154450986, 1182190856781604, 21954973054515490, 429690186924088871
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A220609.

Programs

  • Maple
    Digits := 64:f := proc(n,x) ceil(GAMMA(n+x)/GAMMA(x)); end;

A020031 Nearest integer to Gamma(n + 4/7)/Gamma(4/7).

Original entry on oeis.org

1, 1, 1, 2, 8, 38, 210, 1380, 10450, 89574, 857352, 9063435, 104876887, 1318452295, 17893281148, 260730668151, 4059948975491, 67279154450986, 1182190856781603, 21954973054515490, 429690186924088871
Offset: 0

Views

Author

Keywords

Comments

a(n) equals A020121(n) or A020076(n). - R. J. Mathar, May 18 2007

Crossrefs

Programs

  • Maple
    Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
  • Mathematica
    Round[Gamma[Range[0,20]+4/7]/Gamma[4/7]] (* Harvey P. Dale, Dec 24 2023 *)
Showing 1-5 of 5 results.