A220627 Prime numbers that are not Brazilian.
2, 3, 5, 11, 17, 19, 23, 29, 37, 41, 47, 53, 59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 281, 283, 293, 311, 313, 317
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature.
Crossrefs
Cf. A085104.
Programs
-
Mathematica
brazBases[n_] := Select[Range[2, n - 2], Length[Union[IntegerDigits[n, #]]] == 1 &]; Select[Range[2, 1000], PrimeQ[#] && brazBases[#] == {} &] (* T. D. Noe, Dec 26 2012 *)
-
PARI
isok(p) = {if (isprime(p), for (b=2, p-1, my(d=digits(p, b), md=vecmin(d)); if ((#d > 2) && (md == 1) && (vecmax(d) == 1), return (0));); return (1););} \\ Michel Marcus, Apr 30 2021
-
Python
from sympy.ntheory.factor_ import digits from sympy import isprime, primerange def B(n): l=[] for b in range(2, n - 1): d=digits(n, b)[1:] if max(d)==min(d): l.append(n) return l print([n for n in primerange(2, 1001) if not B(n)]) # Indranil Ghosh, Jun 22 2017
Comments