cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A019434 Fermat primes: primes of the form 2^(2^k) + 1, for some k >= 0.

Original entry on oeis.org

3, 5, 17, 257, 65537
Offset: 1

Views

Author

Keywords

Comments

It is conjectured that there are only 5 terms. Currently it has been shown that 2^(2^k) + 1 is composite for 5 <= k <= 32 (see Eric Weisstein's Fermat Primes link). - Dmitry Kamenetsky, Sep 28 2008
No Fermat prime is a Brazilian number. So Fermat primes belong to A220627. For proof see Proposition 3 page 36 in "Les nombres brésiliens" in Links. - Bernard Schott, Dec 29 2012
This sequence and A001220 are disjoint (see "Other theorems about Fermat numbers" in Wikipedia link). - Felix Fröhlich, Sep 07 2014
Numbers n > 1 such that n * 2^(n-2) divides (n-1)! + 2^(n-1). - Thomas Ordowski, Jan 15 2015
From Jaroslav Krizek, Mar 17 2016: (Start)
Primes p such that phi(p) = 2*phi(p-1); primes from A171271.
Primes p such that sigma(p-1) = 2p - 3.
Primes p such that sigma(p-1) = 2*sigma(p) - 5.
For n > 1, a(n) = primes p such that p = 4 * phi((p-1) / 2) + 1.
Subsequence of A256444 and A256439.
Conjectures:
1) primes p such that phi(p) = 2*phi(p-2).
2) primes p such that phi(p) = 2*phi(p-1) = 2*phi(p-2).
3) primes p such that p = sigma(phi(p-2)) + 2.
4) primes p such that phi(p-1) + 1 divides p + 1.
5) numbers n such that sigma(n-1) = 2*sigma(n) - 5. (End)
Odd primes p such that ratio of the form (the number of nonnegative m < p such that m^q == m (mod p))/(the number of nonnegative m < p such that -m^q == m (mod p)) is a divisor of p for all nonnegative q. - Juri-Stepan Gerasimov, Oct 13 2020
Numbers n such that tau(n)*(number of distinct ratio (the number of nonnegative m < n such that m^q == m (mod n))/(the number of nonnegative m < n such that -m^q == m (mod n))) for nonnegative q is equal to 4. - Juri-Stepan Gerasimov, Oct 22 2020
The numbers of primitive roots for the five known terms are 1, 2, 8, 128, 32768. - Gary W. Adamson, Jan 13 2022
Prime numbers such that every residue is either a primitive root or a quadratic residue. - Keith Backman, Jul 11 2022
If there are only 5 Fermat primes, then there are only 31 odd order groups which have a 2-group automorphism group. See the Miles Englezou link for a proof. - Miles Englezou, Mar 10 2025

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 137-141, 197.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see Table 1, p. 458.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, pp. 78-79.
  • Richard K. Guy, Unsolved Problems in Number Theory, A3.
  • Hardy and Wright, An Introduction to the Theory of Numbers, bottom of page 18 in the sixth edition, gives an heuristic argument that this sequence is finite.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 7, 70.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 136-137.

Crossrefs

Subsequence of A147545 and of A334101. Cf. also A333788, A334092.
Cf. A045544.

Programs

Formula

a(n+1) = A180024(A049084(a(n))). - Reinhard Zumkeller, Aug 08 2010
a(n) = 1 + A001146(n-1), if 1 <= n <= 5. - Omar E. Pol, Jun 08 2018

A000215 Fermat numbers: a(n) = 2^(2^n) + 1.

Original entry on oeis.org

3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, 340282366920938463463374607431768211457, 115792089237316195423570985008687907853269984665640564039457584007913129639937
Offset: 0

Views

Author

Keywords

Comments

It is conjectured that just the first 5 numbers in this sequence are primes.
An infinite coprime sequence defined by recursion. - Michael Somos, Mar 14 2004
For n>0, Fermat numbers F(n) have digital roots 5 or 8 depending on whether n is even or odd (Koshy). - Lekraj Beedassy, Mar 17 2005
This is the special case k=2 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1,...,n-1}. k=1 gives Sylvester's sequence A000058. - Seppo Mustonen, Sep 04 2005
For n>1 final two digits of a(n) are periodically repeated with period 4: {17, 57, 37, 97}. - Alexander Adamchuk, Apr 07 2007
For 1 < k <= 2^n, a(A007814(k-1)) divides a(n) + 2^k. More generally, for any number k, let r = k mod 2^n and suppose r != 1, then a(A007814(r-1)) divides a(n) + 2^k. - T. D. Noe, Jul 12 2007
From Daniel Forgues, Jun 20 2011: (Start)
The Fermat numbers F_n are F_n(a,b) = a^(2^n) + b^(2^n) with a = 2 and b = 1.
For n >= 2, all factors of F_n = 2^(2^n) + 1 are of the form k*(2^(n+2)) + 1 (k >= 1).
The products of distinct Fermat numbers (in their binary representation, see A080176) give rows of Sierpiński's triangle (A006943). (End)
Let F(n) be a Fermat number. For n > 2, F(n) is prime if and only if 5^((F(n)-1)/4) == sqrt(F(n)-1) (mod F(n)). - Arkadiusz Wesolowski, Jul 16 2011
Conjecture: let the smallest prime factor of Fermat number F(n) be P(F(n)). If F(n) is composite, then P(F(n)) < 3*2^(2^n/2 - n - 2). - Arkadiusz Wesolowski, Aug 10 2012
The Fermat primes are not Brazilian numbers, so they belong to A220627, but the Fermat composites are Brazilian numbers so they belong to A220571. For a proof, see Proposition 3 page 36 on "Les nombres brésiliens" in Links. - Bernard Schott, Dec 29 2012
It appears that this sequence is generated by starting with a(0)=3 and following the rule "Write in binary and read in base 4". For an example of "Write in binary and read in ternary", see A014118. - John W. Layman, Jul 30 2013
Conjecture: the numbers > 5 in this sequence, i.e., 2^2^k + 1 for k>1, are exactly the numbers n such that (n-1)^4-1 divides 2^(n-1)-1. - M. F. Hasler, Jul 24 2015

Examples

			a(0) = 1*2^1 + 1 = 3 = 1*(2*1) + 1.
a(1) = 1*2^2 + 1 = 5 = 1*(2*2) + 1.
a(2) = 1*2^4 + 1 = 17 = 2*(2*4) + 1.
a(3) = 1*2^8 + 1 = 257 = 16*(2*8) + 1.
a(4) = 1*2^16 + 1 = 65537 = 2048*(2*16) + 1.
a(5) = 1*2^32 + 1 = 4294967297 = 641*6700417 = (10*(2*32) + 1)*(104694*(2*32) + 1).
a(6) = 1*2^64 + 1 = 18446744073709551617 = 274177*67280421310721 = (2142*(2*64) + 1)*(525628291490*(2*64) + 1).
		

References

  • M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 2nd. ed., 2001; see p. 3.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 7.
  • P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 87.
  • James Gleick, Faster, Vintage Books, NY, 2000 (see pp. 259-261).
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, pp. 78-79.
  • R. K. Guy, Unsolved Problems in Number Theory, A3.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 14.
  • E. Hille, Analytic Function Theory, Vol. I, Chelsea, N.Y., see p. 64.
  • T. Koshy, "The Digital Root Of A Fermat Number", Journal of Recreational Mathematics Vol. 32 No. 2 2002-3 Baywood NY.
  • M. Krizek, F. Luca & L. Somer, 17 Lectures on Fermat Numbers, Springer-Verlag NY 2001.
  • C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory, Oxford University Press, NY, 1966, p. 36.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see pp. 18, 59.
  • C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 202.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 6-7, 70-75.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 136-137.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 148-149.

Crossrefs

a(n) = A001146(n) + 1 = A051179(n) + 2.
See A004249 for a similar sequence.
Cf. A080176 for binary representation of Fermat numbers.

Programs

  • Haskell
    a000215 = (+ 1) . (2 ^) . (2 ^)  -- Reinhard Zumkeller, Feb 13 2015
    
  • Maple
    A000215 := n->2^(2^n)+1;
  • Mathematica
    Table[2^(2^n) + 1, {n, 0, 8}] (* Alonso del Arte, Jun 07 2011 *)
  • Maxima
    A000215(n):=2^(2^n)+1$ makelist(A000215(n),n,0,10); /* Martin Ettl, Dec 10 2012 */
    
  • PARI
    a(n)=if(n<1,3*(n==0),(a(n-1)-1)^2+1)
    
  • Python
    def a(n): return 2**(2**n) + 1
    print([a(n) for n in range(9)]) # Michael S. Branicky, Apr 19 2021

Formula

a(0) = 3; a(n) = (a(n-1)-1)^2 + 1, n >= 1.
a(n) = a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get the empty product, i.e., 1, plus 2, giving 3 = a(0). - Benoit Cloitre, Sep 15 2002 [edited by Daniel Forgues, Jun 20 2011]
The above formula implies that the Fermat numbers (being all odd) are coprime.
Conjecture: F is a Fermat prime if and only if phi(F-2) = (F-1)/2. - Benoit Cloitre, Sep 15 2002
A000120(a(n)) = 2. - Reinhard Zumkeller, Aug 07 2010
If a(n) is composite, then a(n) = A242619(n)^2 + A242620(n)^2 = A257916(n)^2 - A257917(n)^2. - Arkadiusz Wesolowski, May 13 2015
Sum_{n>=0} 1/a(n) = A051158. - Amiram Eldar, Oct 27 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = A249119.
Product_{n>=0} (1 - 1/a(n)) = 1/2. (End)
a(n) = 2*A077585(n) + 3. - César Aguilera, Jul 26 2023
a(n) = 2*2^A000225(n) + 1. - César Aguilera, Jul 11 2024

A085104 Primes of the form 1 + n + n^2 + n^3 + ... + n^k, n > 1, k > 1.

Original entry on oeis.org

7, 13, 31, 43, 73, 127, 157, 211, 241, 307, 421, 463, 601, 757, 1093, 1123, 1483, 1723, 2551, 2801, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9901, 10303, 11131, 12211, 12433, 13807, 14281, 17293, 19183, 19531, 20023
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 03 2003

Keywords

Comments

Primes that are base-b repunits with three or more digits for at least one b >= 2: Primes in A053696. Subsequence of A000668 U A076481 U A086122 U A165210 U A102170 U A004022 U ... (for each possible b). - Rick L. Shepherd, Sep 07 2009
From Bernard Schott, Dec 18 2012: (Start)
Also known as Brazilian primes. The primes that are not Brazilian primes are in A220627.
The number of terms k+1 is always an odd prime, but this is not enough to guarantee a prime, for example 111 = 1 + 10 + 100 = 3*37.
The inverses of the Brazilian primes form a convergent series; the sum is slightly larger than 0.33 (see Theorem 4 of Quadrature article in the Links). (End)
It is not known whether there are infinitely many Brazilian primes. See A002383. - Bernard Schott, Jan 11 2013
Primes of the form (n^p - 1)/(n - 1), where p is odd prime and n > 1. - Thomas Ordowski, Apr 25 2013
Number of terms less than 10^n: 1, 5, 14, 34, 83, 205, 542, 1445, 3880, 10831, 30699, 88285, ..., . - Robert G. Wilson v, Mar 31 2014
From Bernard Schott, Apr 08 2017: (Start)
Brazilian primes fall into two classes:
1) when n is prime, we get sequence A023195 except 3 which is not Brazilian,
2) when n is composite, we get sequence A285017. (End)
The conjecture proposed in Quadrature "No Sophie Germain prime is Brazilian (prime)" (see link Bernard Schott, Quadrature, Conjecture 1, page 36) is false. Thanks to Giovanni Resta, who found that a(856) = 28792661 = 1 + 73 + 73^2 + 73^3 + 73^4 = (11111)73 is the 141385th Sophie Germain prime. - _Bernard Schott, Mar 08 2019

Examples

			13 is a term since it is prime and 13 = 1 + 3 + 3^2 = 111_3.
31 is a term since it is prime and 31 = 1 + 2 + 2^2 + 2^3 + 2^4 = 11111_2.
From _Hartmut F. W. Hoft_, May 08 2017: (Start)
The sequence represented as a sparse matrix with the k-th column indexed by A006093(k+1), primes minus 1, and row n by A000027(n+1). Traversing the matrix by counterdiagonals produces a non-monotone ordering.
    2    4      6        10             12          16
2  7    31     127      -              8191        131071
3  13   -      1093     -              797161      -
4  -    -      -        -              -           -
5  31   -      19531    12207031       305175781   -
6  43   -      55987    -              -           -
7  -    2801   -        -              16148168401 -
8  73   -      -        -              -           -
9  -    -      -        -              -           -
10  -    -      -        -              -           -
11  -    -      -        -              -           50544702849929377
12  157  22621  -        -              -           -
13  -    30941  5229043  -              -           -
14  211  -      8108731  -              -           -
15  241  -      -        -              -           -
16 -    -      -        -              -           -
17  307  88741  25646167 2141993519227  -           -
18  -    -      -        -              -           -
19  -    -      -        -              -           -
20  421  -      -        10778947368421 -           689852631578947368421
21  463  -      -        17513875027111 -           1502097124754084594737
22  -    245411 -        -              -           -
23  -    292561 -        -              -           -
24  601  346201 -        -              -           -
Except for the initial values in the respective sequences the rows and columns as labeled in the matrix are:
column  2:  A002383            row 2:  A000668
column  4:  A088548            row 3:  A076481
column  6:  A088550            row 4:  -
column 10:  A162861            row 5:  A086122.
(End)
		

References

  • Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, page 174.

Crossrefs

Cf. A189891 (complement), A125134 (Brazilian numbers), A220627 (Primes that are non-Brazilian).
Cf. A003424 (n restricted to prime powers).
Equals A023195 \3 Union A285017 with empty intersection.
Primes of the form (b^k-1)/(b-1) for b=2: A000668, b=3: A076481, b=5: A086122, b=6: A165210, b=7: A102170, b=10: A004022.
Primes of the form (b^k-1)/(b-1) for k=3: A002383, k=5: A088548, k=7: A088550, k=11: A162861.

Programs

  • Haskell
    a085104 n = a085104_list !! (n-1)
    a085104_list = filter ((> 1) . a088323) a000040_list
    -- Reinhard Zumkeller, Jan 22 2014
  • Mathematica
    max = 140; maxdata = (1 - max^3)/(1 - max); a = {}; Do[i = 1; While[i = i + 2; cc = (1 - m^i)/(1 - m); cc <= maxdata, If[PrimeQ[cc], a = Append[a, cc]]], {m, 2, max}]; Union[a] (* Lei Zhou, Feb 08 2012 *)
    f[n_] := Block[{i = 1, d, p = Prime@ n}, d = Rest@ Divisors[p - 1]; While[ id = IntegerDigits[p, d[[i]]]; id != Reverse@ id || Union@ id != {1}, i++]; d[[i]]]; Select[ Range[2, 60], 1 + f@# != Prime@# &] (* Robert G. Wilson v, Mar 31 2014 *)
  • PARI
    list(lim)=my(v=List(),t,k);for(n=2,sqrt(lim), t=1+n;k=1; while((t+=n^k++)<=lim,if(isprime(t), listput(v,t))));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jan 08 2013
    
  • PARI
    A085104_vec(N,L=List())=forprime(K=3,logint(N+1,2),for(n=2,sqrtnint(N-1,K-1),isprime((n^K-1)\(n-1))&&listput(L,(n^K-1)\(n-1))));Set(L) \\ M. F. Hasler, Jun 26 2018
    

Formula

A010051(a(n)) * A088323(a(n)) > 1. - Reinhard Zumkeller, Jan 22 2014

Extensions

More terms from David Wasserman, Jan 26 2005

A220570 Numbers that are not Brazilian numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 11, 17, 19, 23, 25, 29, 37, 41, 47, 49, 53, 59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 281
Offset: 1

Views

Author

Bernard Schott, Dec 16 2012

Keywords

Comments

From Bernard Schott, Apr 23 2019: (Start)
The terms of this sequence are:
- integer 1
- oblong semiprime 6,
- primes that are not Brazilian, they are in A220627, and,
- squares of all the primes, except 121 = (11111)_3.
So there is an infinity of integers that are not Brazilian numbers. (End)
This sequence has density 0 as A125134(n) ~ n where A125134 is the complement of this sequence. - David A. Corneth, Jan 22 2021

Examples

			25 is a member because it's not possible to write 25=(mm...mm)_b where b is a natural number with 1 < b < 24 and 1 <= m < b.
		

References

  • Pierre Bornsztein, "Hypermath", Vuibert, Exercise a35, page 7.

Crossrefs

Cf. A125134 (Brazilian numbers), A190300 (composite numbers not Brazilian), A258165 (odd numbers not Brazilian), A220627 (prime numbers not Brazilian).

Programs

  • PARI
    for(n=1,300,c=0;for(b=2,n-2,d=digits(n,b);if(vecmin(d)==vecmax(d),c=n;break);c++);if(c==max(n-3,0),print1(n,", "))) \\ Derek Orr, Apr 30 2015

A326379 Numbers m such that beta(m) = tau(m)/2 - 1 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.

Original entry on oeis.org

2, 3, 5, 8, 10, 11, 14, 17, 18, 19, 22, 23, 24, 27, 28, 29, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 65, 66, 67, 68, 69, 70, 71, 74, 75, 76, 77, 78, 79, 82, 83, 84, 87, 88, 89, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 113, 115, 116
Offset: 1

Views

Author

Bernard Schott, Jul 03 2019

Keywords

Comments

As tau(m) = 2 * (1 + beta(m)), the terms of this sequence are not squares. Indeed, there are 3 subsequences which realize a partition of this sequence (see examples):
1) Non-oblong composites which have no Brazilian representation with three digits or more, they form A326386.
2) Oblong numbers that have only one Brazilian representation with three digits or more. These oblong integers are a subsequence of A167782 and form A326384.
3) Non Brazilian primes, then beta(p) = tau(p)/2 - 1 = 0.

Examples

			One example for each type:
10 = 22_4 and tau(10) = 4 with beta(10) = 1.
42 = 6 * 7 = 222_4 = 33_13 = 22_20 and tau(42) = 8 with beta(42) = 3.
17 is no Brazilian prime with tau(17) = 2 and beta(17) = 0.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Cf. A220627 (subsequence of non Brazilian primes).
Cf. A326378 (tau(m)/2 - 2), A326380 (tau(m)/2), A326381 (tau(m)/2 + 1), A326382 (tau(m)/2 + 2), A326383 (tau(m)/2 + 3).

Programs

  • PARI
    beta(n) = sum(i=2, n-2, #vecsort(digits(n, i), , 8)==1); \\ A220136
    isok(n) = beta(n) == numdiv(n)/2 - 1; \\ Michel Marcus, Jul 03 2019

A326384 Oblong composite numbers m such that beta(m) = tau(m)/2 - 1 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.

Original entry on oeis.org

42, 156, 182, 342, 1406, 1640, 6162, 7140, 14280, 14762, 20880, 25440, 29412, 32942, 33306, 47742, 48620, 49952, 61256, 67860, 95172, 95790, 158802, 176820, 191406, 202950, 209306, 257556, 296480, 297570
Offset: 1

Views

Author

Bernard Schott, Jul 10 2019

Keywords

Comments

The number of Brazilian representations of an oblong number m with repdigits of length = 2 is beta'(n) = tau(n)/2 - 2.
This sequence is the second subsequence of A326379: oblong numbers that have only one Brazilian representation with three digits or more.
Prime 2 is oblong and satisfies also beta(2) = tau(2)/2 - 1 = 0 but non-Brazilian primes are in A220627.

Examples

			There are two types of such numbers:
1) m is repunit with 3 digits or more in only one base:
156 = 12 * 13 = 1111_5 = 66_25 = 44_38 = 33_51 = 22_77 with tau(156) = 12 and beta(156) = 5.
2) m is repdigit with 3 digits or more and digit >= 2 in only one base:
tau(m) = 8 and beta(m) = 3:  42 = 6*7 = 222_4 = 33_13 = 22_20,
tau(m) = 12 and beta(m)= 5:  342 = 18*19 = 666_7 = 99_37 = 66_56 = 33_113 = 22_170,
tau(m) = 16 and beta(m)= 7: 1640 = 40*41 = 2222_9 = (20,20)_81 = (10,10)_2 = 88_204 = 55_327 = 44_409 = 22_819.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Subsequence of A002378 (oblong numbers) and of A167782.
Cf. A326378 (oblongs with tau(m)/2 - 2), A326385 (oblongs with tau(m)/2), A309062 (oblongs with tau(m)/2 + k, k >= 1).

A340795 a(n) is the number of divisors of n that are Brazilian.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 2, 1, 2, 0, 1, 0, 2, 2, 1, 0, 3, 0, 2, 1, 3, 0, 3, 1, 3, 1, 1, 2, 3, 0, 1, 2, 4, 0, 4, 1, 2, 2, 1, 0, 5, 1, 2, 1, 3, 0, 3, 1, 5, 1, 1, 0, 6, 0, 2, 3, 4, 2, 3, 0, 2, 1, 5, 0, 6, 1, 1, 2, 2, 2, 4, 0, 6, 2, 1, 0, 7, 1, 2, 1, 4, 0, 6
Offset: 1

Views

Author

Bernard Schott, Jan 21 2021

Keywords

Comments

The cases a(n) = 0 and a(n) = 1 are respectively detailed in A341057 and A341058.

Examples

			For n = 16, the divisors are 1, 2, 4, 8 and 16. Only 8 = 22_3 and 16 = 22_7 are Brazilian numbers, so a(16) = 2.
For n = 30, the divisors are 1, 2, 3, 5, 6, 10, 15 and 30. Only 10 = 22_4, 15 = 33_4 and 30 = 33_9 are Brazilian numbers, so a(30) = 3.
For n = 49, the divisors are 1, 7 and 49. Only 7 = 111_2 is Brazilian, so a(49) = 1 although 49 that is square of prime <> 121 is not Brazilian.
		

Crossrefs

Programs

  • Mathematica
    brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[Union[IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; a[n_] := DivisorSum[n, 1 &, brazQ[#] &]; Array[a, 100] (* Amiram Eldar, Jan 21 2021 *)
  • PARI
    isb(n) = for(b=2, n-2, d=digits(n, b); if(vecmin(d)==vecmax(d), return(1))); \\ A125134
    a(n) = sumdiv(n, d, isb(d)); \\ Michel Marcus, Jan 24 2021

A187823 Primes of the form (p^x - 1)/(p^y - 1), where p is prime, y > 1, and y is the largest proper divisor of x.

Original entry on oeis.org

5, 17, 73, 257, 757, 65537, 262657, 1772893, 4432676798593, 48551233240513, 378890487846991, 3156404483062657, 17390284913300671, 280343912759041771, 319913861581383373, 487014306953858713, 5559917315850179173, 7824668707707203971, 8443914727229480773, 32564717507686012813
Offset: 1

Views

Author

Bernard Schott, Dec 27 2012

Keywords

Comments

Complement of A023195 relative to A003424.
Only eight primes of this form don't exceed 1.275*10^10 (see Bateman and Stemmler):
(1) three of the form (p^9 - 1)/(p^3 - 1): 73 (p=2), 757 (p=3), 1772893 (p=11);
(2) four of the form (2^x - 1)/(2^y - 1) with x = 2y: 5 (x=4), 17 (x=8), 257 (x=16), 65537 (x=32); and
(3) the prime 262657 = (2^27 - 1)/(2^9 - 1).
Some of these prime numbers are not Brazilian, these are Fermat primes > 3: 5, 17, 257, 65537, so they are in A220627.
The other primes are Brazilian so they are in A085104, example: (p^9 - 1)/(p^3 - 1) = 111_{p^3} with 73 = 111_8, 757 = 111_27, 1772893 = 111_1331, also 262657 = 111_512 [See section V.4 of Quadrature article in Links] (comment improved in Mar 03 2023).
Comments from Don Reble, Jul 28 2022 (Start)
This is an easy sequence that looks hard.
Note that x must be a power of a prime; otherwise (p^x-1)/(p^y-1) has too many cyclotomic factors.
Almost all values are (p^9-1)/(p^3-1). The exceptions below 10^45
are the Fermat primes 5, 17, 257, 65537 and also
262657, 4432676798593, 5559917315850179173,
227376585863531112677002031251,
467056170954468301850494793701001,
36241275390490156321975496980895092369525753,
284661951906193731091845096405947222295673201 (see examples).
(End)

Examples

			5 = (2^4 - 1)/(2^2 - 1)= 11_{2^2} = 11_4.
17 = (2^8 - 1)/(2^4 - 1) = 11_{2^4} = 11_16.
257 = (2^16 - 1)/(2^8 - 1) = 11_{2^8} = 11_256.
757 = (3^9 - 1)/(3^3 - 1) = 111_{3^3} = 111_27.
262657 = (2^27 - 1)/(2^9 - 1) = 111_{2^9} = 111_512.
655357 = (2^32 - 1)/(2^16 - 1) = 11_{2^16} = 11_655356.
4432676798593 = (2^49 - 1)/(2^7 - 1) = 1111111_{2^7} = 1111111_128.
5559917315850179173 = (11^27 - 1)/(11^9 - 1) = 111_{11^3} = 111_1331.
227376585863531112677002031251 = (5^49 - 1)/(5^7 - 1) = 1111111_{5^7}.
467056170954468301850494793701001 = (43^25 - 1)/(43^5 - 1) = 11111_{43^5}.
36241275390490156321975496980895092369525753 = (263^27 - 1)/(263^9 - 1).
284661951906193731091845096405947222295673201 = (167^25 - 1)/(167^5 - 1).
		

Crossrefs

Equals A003424 \ A023195.

Extensions

a(9)-a(16) from Don Reble, Jul 28 2022
a(17)-a(20) from Don Reble, Mar 21 2023

A258165 Odd non-Brazilian numbers > 1.

Original entry on oeis.org

3, 5, 9, 11, 17, 19, 23, 25, 29, 37, 41, 47, 49, 53, 59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293, 311, 313, 317, 331, 337
Offset: 1

Views

Author

Keywords

Comments

Complement of A257521 in A144396 (odd numbers > 1).
The terms are only odd primes or squares of odd primes.
Most odd primes are present except those in A085104.
All terms which are not primes are squares of odd primes except 121 = 11^2.

Examples

			11 is present because there is no base b < 11 - 1 = 10 such that the representation of 11 in base b is a repdigit (all digits are equal). In fact, we have: 11 = 1011_2 = 102_3 = 23_4 = 21_5 = 15_6 = 14_7 = 13_8 = 12_9, and none of these representations are repdigits. - _Bernard Schott_, Jun 21 2017
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{b = 2}, While[b < n - 1 && Length@ Union@ IntegerDigits[n, b] > 1, b++]; b+1 == n]; Select[1 + 2 Range@ 170, fQ]
  • PARI
    forstep(n=3, 300, 2, c=1; for(b=2, n-2, d=digits(n, b); if(vecmin(d)==vecmax(d), c=0;  break));if(c,print1(n,", "))) \\ Derek Orr, May 27 2015
    
  • Python
    from sympy.ntheory.factor_ import digits
    l=[]
    for n in range(3, 301, 2):
        c=1
        for b in range(2, n - 1):
            d=digits(n, b)[1:]
            if max(d)==min(d):
                c=0
                break
        if c: l.append(n)
    print(l) # Indranil Ghosh, Jun 22 2017, after PARI program

A341057 Numbers without Brazilian divisors.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 11, 17, 19, 23, 25, 29, 37, 41, 47, 53, 59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293, 311
Offset: 1

Views

Author

Bernard Schott, Feb 04 2021

Keywords

Comments

The first 16 terms are the first 16 terms of A220570 (non-Brazilian numbers), then a(17) = 53 while A220570(17) = 49.
m is a term iff m = 1, or m = 6, or m is a non-Brazilian prime (A220627) or m is the square of a non-Brazilian prime, except for 121 that is Brazilian (see examples).

Examples

			One example for each type of terms that has k divisors:
-> k=1: 1 is the smallest number not Brazilian, hence 1 is the first term.
-> k=2: 17 is a prime non-Brazilian, hence 17 is a term.
-> k=3: 25 has three divisors {1, 5, 25} that are all not Brazilian, hence 25 is another term.
-> k=4: 6 has four divisors {1, 2, 3, 6} that are all not Brazilian, hence 6 is the term that has the largest number of divisors.
		

Crossrefs

Cf. A125134, A340795, A308851, A341058 (with 1 Brazilian divisor).
Subsequence of A220570 (non-Brazilian numbers).
Supersequence of A220627 (non-Brazilian primes).

Programs

  • Mathematica
    brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length @ Union @ IntegerDigits[n, b] > 1, b++]; b < n - 1]; q[n_] := AllTrue[Divisors[n], ! brazQ[#] &]; Select[Range[300], q] (* Amiram Eldar, Feb 04 2021 *)
  • PARI
    isb(n) = for(b=2, n-2, my(d=digits(n, b)); if(vecmin(d)==vecmax(d), return(1))); \\ A125134
    isok(n) = fordiv(n, d, if (isb(d), return(0))); return(1); \\ Michel Marcus, Feb 07 2021

Formula

A340795(a(n)) = 0.
Showing 1-10 of 14 results. Next