A221076 Continued fraction expansion of product_{n>=0} (1-sqrt(5)*[sqrt(5)-2]^{4n+3})/(1-sqrt(5)*[sqrt(5)-2]^{4n+1}).
2, 16, 1, 32, 1, 320, 1, 608, 1, 5776, 1, 10944, 1, 103680, 1, 196416, 1, 1860496, 1, 3524576, 1, 33385280, 1, 63245984, 1, 599074576, 1, 1134903168, 1, 10749957120, 1, 20365011072, 1, 192900153616, 1, 365435296160, 1
Offset: 0
Examples
Product {n >= 0} {1 - sqrt(5)*(sqrt(5) - 2)^(4*n+3)}/{1 - sqrt(5)*(sqrt(5) - 2)^(4*n+1)} = 2.05892 54859 32105 82744 ... = 2 + 1/(16 + 1/(1 + 1/(32 + 1/(1 + 1/(320 + 1/(1 + 1/(608 + ...))))))). Since (sqrt(5) - 2)^3 = 17*sqrt(5) - 38 we have the following simple continued fraction expansion: product {n >= 0} {1 - sqrt(5)*(17*sqrt(5) - 38)^(4*n+3)}/{1 - sqrt(5)*(17*sqrt(5) - 38)^(4*n+1)} = 1.03030 31892 29728 52318 ... = 1 + 1/(32 + 1/(1 + 1/(5776 + 1/(1 + 1/(196416 + 1/(1 + 1/(33385280 + ...))))))).
Links
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,18,0,-18,0,-1,0,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{0,1,0,18,0,-18,0,-1,0,1},{2,16,1,32,1,320,1,608,1,5776,1},40] (* or *) Join[{2},Riffle[LinearRecurrence[{1,18,-18,-1,1},{16,32,320,608,5776},20],1]] (* Harvey P. Dale, Jun 05 2023 *)
Formula
a(2*n) = 1 for n >= 1. For n >= 1 we have:
a(4*n - 3) = (sqrt(5) + 2)^(2*n) + (sqrt(5) - 2)^(2*n) - 2;
a(4*n - 1) = 1/sqrt(5)*{(sqrt(5) + 2)^(2*n + 1) + (sqrt(5) - 2)^(2*n + 1)} - 2.
O.g.f.: 2 + x^2/(1 - x^2) + 16*x*(1 + x^2)^2/(1 - 19*x^4 + 19*x^8 - x^12) = 2 + 16*x + x^2 + 32*x^3 + x^4 + 320*x^5 + ....
O.g.f.: (x^10-2*x^8-18*x^6+36*x^4-16*x^3+x^2-16*x-2) / ((x-1)*(x+1)*(x^4-4*x^2-1)*(x^4+4*x^2-1)). - Colin Barker, Jan 10 2014
Comments