cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221209 Decimal expansion of two times the Catalan constant.

Original entry on oeis.org

1, 8, 3, 1, 9, 3, 1, 1, 8, 8, 3, 5, 4, 4, 3, 8, 0, 3, 0, 1, 0, 9, 2, 0, 7, 0, 2, 9, 8, 6, 4, 7, 6, 8, 2, 2, 1, 5, 4, 8, 2, 9, 8, 7, 4, 8, 5, 6, 3, 3, 4, 4, 2, 6, 8, 5, 3, 2, 9, 9, 6, 2, 3, 9, 2, 4, 3, 5, 2, 6, 0, 3, 9, 5, 5, 2, 5, 0, 9, 5, 3, 8, 9, 5, 8, 7, 1, 3, 0, 2, 5, 8, 5, 2, 2, 3, 0, 2, 1, 2
Offset: 1

Views

Author

R. J. Mathar, Feb 21 2013

Keywords

Examples

			1.83193118835443803010920702986476822154...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.7.2, p. 55.
  • I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series and products, 5th edition, Academic Press, 1994, eq. (3.521.2).

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 2*Catalan(R); // G. C. Greubel, Aug 25 2018
  • Maple
    evalf(2*Catalan) ;
  • Mathematica
    RealDigits[2 Catalan, 10, 100][[1]] (* Bruno Berselli, Feb 21 2013 *)
  • PARI
    default(realprecision, 100); 2*Catalan \\ G. C. Greubel, Aug 25 2018
    

Formula

Equals Integral_{x=0..oo} x/cosh(x) dx.
Equals 2*A006752.
From Amiram Eldar, Aug 20 2020: (Start)
Equals Integral_{x=0..Pi/2} x/sin(x) dx.
Equals 1 + Integral_{x=0..oo} x * exp(-x) * tanh(x) dx. (End)
Equals 3F2(1/2,1,1;3/2,3/2;1) [Krupnikov]. - R. J. Mathar, May 13 2024
From Stefano Spezia, Nov 12 2024: (Start)
Equals Integral_{x=0..oo} arctan(x)/(x*sqrt(x^2 + 1)) dx = Integral_{x=0..1} K(x^2) dx, where K(x) is the complete elliptic integral of the first kind (see Shamos).
Equals Sum_{k>=0} 2^(2*k)/((2*k + 1)^2*binomial(2*k,k)) (see Finch). (End)
Equals A247685/2. - Hugo Pfoertner, Nov 12 2024
Equals Sum_{n>=1} H(2*n) * binomial(2*n, n) / (4^n * (2*n + 1)), where H(n) is the n-th harmonic number. - Antonio Graciá Llorente, Apr 04 2025
Equals Integral_{x=-1..1} -log(abs(x))/(1 + x^2) dx. - Kritsada Moomuang, May 28 2025