cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A187771 Numbers whose sum of divisors is the cube of the sum of its prime divisors.

Original entry on oeis.org

245180, 612408, 639198, 1698862, 1721182, 5154168, 7824284, 15817596, 20441848, 25969788, 27688078, 28404862, 35860609, 67149432, 77378782, 91397838, 96462862, 179302264, 191550135, 289772221, 306901244, 311657084, 392802179, 441839706, 572673855, 652117774, 988918364
Offset: 1

Views

Author

Manuel Valdivia, Jan 04 2013

Keywords

Comments

This sequence and A187824 and A187761 are winners in the contest held at the 2013 AMS/MAA Joint Mathematics Meetings. - T. D. Noe, Jan 14 2013
The identity sigma(k) = (sopf(k))^m only occurs for m = 3 (this sequence) in the given range, however it is likely that it also occurs for other powers m in higher numbers.
The smallest k such that sigma(k) = sopf(k)^m, for m=4,5,6 are 1056331752 (A221262), 213556659624 (A221263) and 45770980141656, respectively. - Giovanni Resta, Jan 07 2013
Prime divisors are taken without multiplicity. - Harvey P. Dale, Dec 17 2016

Examples

			a(13) = 35860609 = 41 * 71 * 97 * 127, then sigma(35860609) = 37933056 = (41 + 71 + 97 + 127)^3.
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.

Crossrefs

Cf. A221262 (sigma(k)=sopf(k)^4), A221263 (sigma(k)=sopf(k)^5).

Programs

  • Mathematica
    d[n_]:= If[Plus@@Divisors[n]-Power[Plus@@Select[Divisors[n], PrimeQ], 3]==0, n]; Select[Range[2,10^9], #==d[#]&]
    Select[Range[2, 10^9],DivisorSigma[1,#]==Total[FactorInteger[#][[All, 1]]]^3&] (* Harvey P. Dale, Dec 17 2016 *)
  • PARI
    is(n)=my(f=factor(n));sum(i=1,#f~,f[i,1])^3==sigma(n) \\ Charles R Greathouse IV, Jun 29 2013

Formula

a(n) = k if sigma(k) = (sopf(k))^3, where sigma(k) = A000203(k) and sopf(k) = A008472(k).

A221263 Numbers k such that sigma(k) is the fifth power of the sum of the prime divisors of k.

Original entry on oeis.org

213556659624, 359544809085, 1329797339640, 1548635130140, 1746049287480, 1810001934510, 1867318744632, 1875874796664, 1909975290390, 2040256862622, 2516452216712, 3407803953785, 6329875033944, 7792308679512, 7840198408728, 7877108796312, 8098434291288, 8241610823832
Offset: 1

Views

Author

Giovanni Resta, Jan 07 2013

Keywords

Comments

The smallest k for which sigma(k) = sopf(k)^6 is 45770980141656. Other such values are 5245619666623908 and 5582294774581035.

Examples

			213556659624 = 2^3*3^3*7^3*11*31*79*107 and sigma(213556659624) = (2+3+7+11+31+79+107)^5.
		

Crossrefs

Cf. A187771 (sigma(k)=sopf(k)^3), A221262 (sigma(k)=sopf(k)^4).
Showing 1-2 of 2 results.