A221697 Numbers whose largest digit of all divisors is 2.
2, 22, 121, 202, 211, 1021, 1201, 2011, 2111, 2221, 2222, 10201, 10211, 12011, 12101, 12211, 12221, 20011, 20021, 20101, 20201, 20222, 21001, 21011, 21101, 21121, 21211, 21221, 22111, 22121, 101021, 101221, 102001, 102101, 102121, 110221, 111121, 111211, 111221, 112111, 112121
Offset: 1
Examples
10201 is a term because the largest digit of all the divisors of 10201 (1, 101, 10201) is 2.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA221697 := proc(n) local dgs,d; dgs := {} ; for d in numtheory[divisors](n) do dgs := dgs union convert(convert(d,base,10),set) ; end do: if max(op(dgs)) = 2 then true; else false; end if; end proc: for n from 2 to 112121 do if isA221697(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jan 30 2013
-
Mathematica
Select[Range[115000],Max[Flatten[IntegerDigits/@Divisors[#]]]==2&] (* Harvey P. Dale, Dec 15 2014 *)
-
Python
from sympy import divisors def ok(n): return '2' == max("".join(map(str, divisors(n)))) print([m for m in range(1, 112122) if ok(m)]) # Michael S. Branicky, Feb 22 2021
-
Python
from sympy import isprime, divisors from itertools import count, islice, product def agen(): # generator of terms yield 2 for d in count(2): for f in "12": for mid in product("012", repeat=d-2): for e in "12": # ending in zero has 5 as divisor s = f+"".join(mid)+e t = int(s) if "2" in s and isprime(t): yield t; continue if "2" == max("".join(map(str, divisors(t)))): yield t print(list(islice(agen(), 50))) # Michael S. Branicky, Aug 03 2022
Comments