cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A106100 Primes with maximal digit = 2.

Original entry on oeis.org

2, 211, 1021, 1201, 2011, 2111, 2221, 10211, 12011, 12101, 12211, 20011, 20021, 20101, 20201, 21001, 21011, 21101, 21121, 21211, 21221, 22111, 101021, 101221, 102001, 102101, 102121, 110221, 111121, 111211, 112111, 112121, 120011, 120121
Offset: 1

Views

Author

Zak Seidov, May 07 2005

Keywords

Comments

Subsequence of A036953. Prime numbers p such that A209928(p) = 2. Complement of A221698 with respect to A221697. [Jaroslav Krizek, Jan 22 2013]

Crossrefs

Programs

  • Maple
    N:= 6: # to get all terms of up to N digits
    M2:= {1};M1:= {1}:
    for d from 1 to N-1 do
      M2:= map(t -> (t, t+10^d, t+2*10^d), M2);
      M1:= map(t -> (t, t+10^d), M1);
    od:
    sort(convert({2} union select(isprime,M2 minus M1),list)); # Robert Israel, Jun 19 2016
  • Mathematica
    Select[Prime[Range[10000]], Max[IntegerDigits[ # ]]==2&]
  • PARI
    isok(p) = isprime(p) && (vecmax(digits(p)) == 2); \\ Michel Marcus, Jan 02 2019

Extensions

More terms from Rick L. Shepherd, May 22 2005

A221698 Composite numbers n such that largest digit of all divisors of n is 2.

Original entry on oeis.org

22, 121, 202, 1111, 2222, 10201, 12221, 20222, 22121, 111221, 112211, 202222, 220121, 221111, 222211, 1021211, 1112221, 1122011, 1222201, 2021111, 2022002, 2022121, 2121101, 2122111, 2200202, 2202211, 2211121, 2212111, 2222011, 10212211, 11112211, 11121011
Offset: 1

Views

Author

Jaroslav Krizek, Jan 22 2013

Keywords

Comments

Also composite numbers n such that largest digit of concatenation of all divisors (A037278) of n is 2.
Composite numbers n such that A209928(n) = 2.
Complement of A106100 with respect to A221697.

Examples

			Number 10201 is in the sequence because the largest digit of all divisors of 10201 (1, 101, 10201) is 2.
		

Crossrefs

Cf. A209928 (largest digit of all divisors of n), A221697.

Programs

  • Mathematica
    t = {}; n = 1; While[Length[t] < 40, n++; m = FromDigits[IntegerDigits[n, 3]]; If[! PrimeQ[m] && Max[Union[Flatten[IntegerDigits[Divisors[m]]]]] <= 2, AppendTo[t, m]]]; t (* T. D. Noe, Jan 30 2013 *)
Showing 1-2 of 2 results.