A221762 Numbers m such that 11*m^2 + 5 is a square.
1, 2, 22, 41, 439, 818, 8758, 16319, 174721, 325562, 3485662, 6494921, 69538519, 129572858, 1387284718, 2584962239, 27676155841, 51569671922, 552135832102, 1028808476201, 11015040486199, 20524599852098, 219748673891878, 409463188565759
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (0,20,0,-1).
Crossrefs
Programs
-
Magma
m:=24; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+2*x^2+x^3)/(1-20*x^2+x^4))); -
Magma
I:=[1,2,22,41]; [n le 4 select I[n] else 20*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 18 2013
-
Maple
A221762:=proc(q) local n; for n from 1 to q do if type(sqrt(11*n^2+5), integer) then print(n); fi; od; end: A221762(1000); # Paolo P. Lava, Feb 19 2013
-
Mathematica
LinearRecurrence[{0, 20, 0, -1}, {1, 2, 22, 41}, 24] CoefficientList[Series[(1 + 2 x + 2 x^2 + x^3)/(1 - 20 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
Maxima
makelist(expand(((-11*(-1)^n+4*sqrt(11))*(10+3*sqrt(11))^floor(n/2)-(11*(-1)^n+4*sqrt(11))*(10-3*sqrt(11))^floor(n/2))/22), n, 1, 24);
Formula
G.f.: x*(1+2*x+2*x^2+x^3)/(1-20*x^2+x^4).
a(n) = -a(1-n) = ((-11*(-1)^n+4*t)*(10+3*t)^floor(n/2)-(11*(-1)^n+4*t)*(10-3*t)^floor(n/2))/22, where t=sqrt(11).
a(n) = 20*a(n-2) - a(n-4) for n>4, a(1)=1, a(2)=2, a(3)=22, a(4)=41.
a(n)*a(n-3)-a(n-1)*a(n-2) = -(3/2)*(9-7*(-1)^n).
a(n+1) + a(n-1) = A198949(n), with a(0)=-1.
2*a(n-1) - a(n) = A001084(n/2-1) for even n.
Comments