cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A075839 Numbers k such that 11*k^2 - 2 is a square.

Original entry on oeis.org

1, 19, 379, 7561, 150841, 3009259, 60034339, 1197677521, 23893516081, 476672644099, 9509559365899, 189714514673881, 3784780734111721, 75505900167560539, 1506333222617099059, 30051158552174420641, 599516837820871313761, 11960285597865251854579
Offset: 1

Views

Author

Gregory V. Richardson, Oct 14 2002

Keywords

Comments

Lim_{n -> infinity} a(n)/a(n-1) = 10 + 3*sqrt(11).
Positive values of x (or y) satisfying x^2 - 20xy + y^2 + 18 = 0. - Colin Barker, Feb 18 2014

References

  • A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

Crossrefs

Row 20 of array A094954.
Cf. similar sequences listed in A238379.

Programs

  • GAP
    a:=[1,19];; for n in [3..20] do a[n]:=20*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 06 2019
  • Magma
    I:=[1,19]; [n le 2 select I[n] else 20*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 20 2014
    
  • Maple
    seq(coeff(series( x*(1-x)/(1-20*x+x^2), x, n+1), x, n), n = 1..20); # G. C. Greubel, Dec 06 2019
  • Mathematica
    LinearRecurrence[{20,-1},{1,19},20] (* Harvey P. Dale, Apr 13 2012 *)
    Rest@CoefficientList[Series[x*(1-x)/(1-20x+x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Feb 20 2014 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Denominator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
    ] (* Complement of A041015 *)
    a[11, 20] (* Gerry Martens, Jun 07 2015 *)
  • PARI
    a(n)=subst(poltchebi(n+1)+poltchebi(n),x,10)/11
    
  • Sage
    def A075839_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1-x)/(1-20*x+x^2) ).list()
    a=A075839_list(20); a[1:] # G. C. Greubel, Dec 06 2019
    

Formula

11*a(n)^2 - 9*A083043(n)^2 = 2.
a(n) = ((3+sqrt(11))*(10+3*sqrt(11))^(n-1) - (3-sqrt(11))*(10-3*sqrt(11))^(n-1) )/(2*sqrt(11)). - Dean Hickerson, Dec 09 2002
From Michael Somos, Oct 29 2002: (Start)
G.f.: x*(1-x)/(1-20*x+x^2).
a(n) = 20*a(n-1) - a(n-2), n>1. (End)
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i) then a(n) = q(n, 18). - Benoit Cloitre, Dec 06 2002
a(-n+1) = a(n). - Michael Somos, Apr 18 2003
E.g.f.: (1/11)*exp(10*x)*(11*cosh(3*sqrt(11)*x) - 3*sqrt(11)*sinh(3*sqrt(11)*x)) - 1. - Stefano Spezia, Dec 06 2019

Extensions

More terms from Colin Barker, Feb 18 2014
Offset changed to 1 by G. C. Greubel, Dec 06 2019

A198947 x values in the solution to 11*x^2 - 10 = y^2.

Original entry on oeis.org

1, 7, 13, 139, 259, 2773, 5167, 55321, 103081, 1103647, 2056453, 22017619, 41025979, 439248733, 818463127, 8762957041, 16328236561, 174819892087, 325746268093, 3487634884699, 6498597125299, 69577877801893, 129646196237887, 1388069921153161, 2586425327632441
Offset: 1

Views

Author

Sture Sjöstedt, Oct 31 2011

Keywords

Comments

When are n and 11*n+1 perfect squares? This problem gives rise to the Diophantine equation 11*x^2 - 10 = y^2.
Positive values of x (or y) satisfying x^2 - 20xy + y^2 + 90 = 0. - Colin Barker, Feb 18 2014

Crossrefs

Programs

  • Magma
    m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1-x)*(1+8*x+x^2)/(1-20*x^2+x^4))); // Bruno Berselli, Nov 07 2011
    
  • Mathematica
    LinearRecurrence[{0,20,0,-1},{1,7,13,139},30] (* Vincenzo Librandi, Feb 06 2012 *)
  • Maxima
    makelist(expand(((11+(-1)^n*sqrt(11))*(10-3*sqrt(11))^floor(n/2)+(11-(-1)^n*sqrt(11))*(10+3*sqrt(11))^floor(n/2))/22), n, 1, 25); /* Bruno Berselli, Nov 07 2011 */
  • PARI
    v=vector(25); v[1]=1; v[2]=7; v[3]=13; v[4]=139; for(i=5, #v, v[i]=20*v[i-2]-v[i-4]); v \\ Bruno Berselli, Nov 07 2011
    

Formula

a(n+4) = 20*a(n+2) - a(n) with a(1)=1, a(2)=7, a(3)=13, a(4)=139.
From Bruno Berselli, Nov 06 2011: (Start)
G.f.: x*(1-x)*(1+8*x+x^2)/(1-20*x^2+x^4).
a(n) = ((11+(-1)^n*t)*(10-3*t)^floor(n/2)+(11-(-1)^n*t)*(10+3*t)^floor(n/2))/22 with t=sqrt(11). (End).

Extensions

Terms a(1)-a(7) confirmed, a(8)-a(15) added by John W. Layman, Nov 04 2011
a(16)-a(25) from Bruno Berselli, Nov 06 2011

A001084 a(n) = 20*a(n-1) - a(n-2) with a(0) = 0, a(1) = 3.

Original entry on oeis.org

0, 3, 60, 1197, 23880, 476403, 9504180, 189607197, 3782639760, 75463188003, 1505481120300, 30034159217997, 599177703239640, 11953519905574803, 238471220408256420, 4757470888259553597, 94910946544782815520, 1893461460007396756803, 37774318253603152320540
Offset: 0

Views

Author

Keywords

Comments

Also 11*x^2+1 is a square. n=11 in PARI script below. - Cino Hilliard, Mar 08 2003
This sequence gives the values of y in solutions of the Diophantine equation x^2 - 11*y^2 = 1; the corresponding x values are in A001085. - Vincenzo Librandi, Nov 12 2010 [edited by Jon E. Schoenfield, May 04 2014]

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • "Questions D'Arithmetique", Question 3686, Solution by H.L. Mennessier, Mathesis, 65(4, Supplement) 1956, pp. 1-12.

Crossrefs

Equals 3 * A075843.

Programs

  • Magma
    I:=[0,3]; [n le 2 select I[n] else 20*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
    
  • Maple
    A001084:=3*z/(1-20*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{20, -1}, {0, 3}, 20] (* T. D. Noe, Dec 19 2011 *)
    CoefficientList[Series[3*x/(1 - 20*x + x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
    Table[3 ChebyshevU[-1 + n, 10], {n, 0, 18}] (* Herbert Kociemba, Jun 05 2022 *)
  • PARI
    nxsqp1(m,n) = { for(x=1,m, y = n*x*x+1; if(issquare(y),print1(x" ")) ) }
    
  • PARI
    x='x+O('x^30); concat([0], Vec(3*x/(1 - 20*x + x^2))) \\ G. C. Greubel, Dec 20 2017

Formula

Limit_{n->oo} a(n)/a(n-1) = 10 + 3*sqrt(11); for all n in the sequence, 11*n^2 + 1 is a perfect square. - Gregory V. Richardson, Oct 06 2002
a(n) = ((10 + 3*sqrt(11))^n - (10 - 3*sqrt(11))^n) / (2*sqrt(11)). - Gregory V. Richardson, Oct 06 2002
From Mohamed Bouhamida, Sep 20 2006: (Start)
a(n) = 19*(a(n-1) + a(n-2)) - a(n-3).
a(n) = 21*(a(n-1) - a(n-2)) + a(n-3). (End)
G.f.: 3*x/(1 - 20*x + x^2). - G. C. Greubel, Dec 20 2017
E.g.f.: exp(10*x)*sinh(3*sqrt(11)*x)/sqrt(11). - Stefano Spezia, Aug 16 2024

A075844 Numbers k such that 11*k^2 + 4 is a square.

Original entry on oeis.org

0, 6, 120, 2394, 47760, 952806, 19008360, 379214394, 7565279520, 150926376006, 3010962240600, 60068318435994, 1198355406479280, 23907039811149606, 476942440816512840, 9514941776519107194, 189821893089565631040
Offset: 0

Views

Author

Gregory V. Richardson, Oct 14 2002

Keywords

Comments

Lim. n-> Inf. a(n)/a(n-1) = 10 + 3*sqrt(11).

References

  • A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

Crossrefs

Cf. A221762.

Programs

  • GAP
    a:=[0,6];; for n in [3..20] do a[n]:=20*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 06 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); [0] cat Coefficients(R!( 6*x/(1 - 20*x + x^2) )); // G. C. Greubel, Dec 06 2019
    
  • Maple
    seq(coeff(series(6*x/(1-20*x+x^2), x, n+1), x, n), n = 0..20); # G. C. Greubel, Dec 06 2019
  • Mathematica
    LinearRecurrence[{20,-1},{0,6},20] (* Harvey P. Dale, May 28 2012 *)
  • PARI
    my(x='x+O('x^20)); concat([0], Vec(6*x/(1-20*x+x^2))) \\ G. C. Greubel, Dec 06 2019
    
  • Sage
    def A075844_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 6*x/(1-20*x+x^2) ).list()
    A075844_list(20) # G. C. Greubel, Dec 06 2019
    

Formula

a(n) = ((10+3*sqrt(11))^n - (10-3*sqrt(11))^n) / sqrt(11).
a(n) = 20*a(n-1) - a(n-2).
G.f.: 6*x/(1 - 20*x + x^2).
a(n) = (1/3)*(A075839(n+1) - A075839(n)), n>=1. - N. J. A. Sloane, Sep 22 2004
a(n) = 6*A075843(n). - R. J. Mathar, Jul 03 2011

A221763 Numbers m such that 11*m^2 - 7 is a square.

Original entry on oeis.org

1, 4, 16, 79, 319, 1576, 6364, 31441, 126961, 627244, 2532856, 12513439, 50530159, 249641536, 1008070324, 4980317281, 20110876321, 99356704084, 401209456096, 1982153764399, 8004078245599, 39543718583896, 159680355455884, 788892217913521
Offset: 1

Views

Author

Bruno Berselli, Jan 24 2013

Keywords

Comments

See the first comment of A221762.
a(n) == 1 (mod 3).
a(n+1)/a(n) tends alternately to (2+sqrt(11))^2/7 and (5+sqrt(11))^2/14; a(n+2)/a(n) tends to A176395^2/2.
Positive values of x (or y) satisfying x^2 - 20xy + y^2 + 63 = 0. - Colin Barker, Feb 18 2014

Crossrefs

Cf. A221762.

Programs

  • Magma
    m:=24; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+4*x-4*x^2-x^3)/(1-20*x^2+x^4)));
    
  • Magma
    I:=[1,4,16,79]; [n le 4 select I[n] else 20*Self(n-2)-Self(n-4): n in [1..25]]; // Vincenzo Librandi, Aug 18 2013
  • Maple
    A221763:=proc(q)
    local n;
    for n from 1 to q do if type(sqrt(11*n^2-7), integer) then print(n);
    fi; od; end:
    A221763(1000); # Paolo P. Lava, Feb 19 2013
  • Mathematica
    LinearRecurrence[{0, 20, 0, -1}, {1, 4, 16, 79}, 24]
    CoefficientList[Series[(1 + 4 x - 4 x^2 - x^3)/(1 - 20 x^2 + x^4), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • Maxima
    makelist(expand(((11+2*sqrt(11)*(-1)^n)*(10-3*sqrt(11))^floor(n/2)+(11-2*sqrt(11)*(-1)^n)*(10+3*sqrt(11))^floor(n/2))/22), n, 1, 24);
    

Formula

G.f.: x*(1+4*x-4*x^2-x^3)/(1-20*x^2+x^4).
a(n) = ((11+2*t*(-1)^n)*(10-3*t)^floor(n/2)+(11-2*t*(-1)^n)*(10+3*t)^floor(n/2))/22, where t=sqrt(11).
a(n)*a(n-3)-a(n-1)*a(n-2) = (3/2)*(9+(-1)^n).
Showing 1-5 of 5 results.