A075839
Numbers k such that 11*k^2 - 2 is a square.
Original entry on oeis.org
1, 19, 379, 7561, 150841, 3009259, 60034339, 1197677521, 23893516081, 476672644099, 9509559365899, 189714514673881, 3784780734111721, 75505900167560539, 1506333222617099059, 30051158552174420641, 599516837820871313761, 11960285597865251854579
Offset: 1
- A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
Cf. similar sequences listed in
A238379.
-
a:=[1,19];; for n in [3..20] do a[n]:=20*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 06 2019
-
I:=[1,19]; [n le 2 select I[n] else 20*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 20 2014
-
seq(coeff(series( x*(1-x)/(1-20*x+x^2), x, n+1), x, n), n = 1..20); # G. C. Greubel, Dec 06 2019
-
LinearRecurrence[{20,-1},{1,19},20] (* Harvey P. Dale, Apr 13 2012 *)
Rest@CoefficientList[Series[x*(1-x)/(1-20x+x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Feb 20 2014 *)
a[c_, n_] := Module[{},
p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
d := Denominator[Convergents[Sqrt[c], n p]];
t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
Return[t];
] (* Complement of A041015 *)
a[11, 20] (* Gerry Martens, Jun 07 2015 *)
-
a(n)=subst(poltchebi(n+1)+poltchebi(n),x,10)/11
-
def A075839_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(1-x)/(1-20*x+x^2) ).list()
a=A075839_list(20); a[1:] # G. C. Greubel, Dec 06 2019
A198947
x values in the solution to 11*x^2 - 10 = y^2.
Original entry on oeis.org
1, 7, 13, 139, 259, 2773, 5167, 55321, 103081, 1103647, 2056453, 22017619, 41025979, 439248733, 818463127, 8762957041, 16328236561, 174819892087, 325746268093, 3487634884699, 6498597125299, 69577877801893, 129646196237887, 1388069921153161, 2586425327632441
Offset: 1
-
m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1-x)*(1+8*x+x^2)/(1-20*x^2+x^4))); // Bruno Berselli, Nov 07 2011
-
LinearRecurrence[{0,20,0,-1},{1,7,13,139},30] (* Vincenzo Librandi, Feb 06 2012 *)
-
makelist(expand(((11+(-1)^n*sqrt(11))*(10-3*sqrt(11))^floor(n/2)+(11-(-1)^n*sqrt(11))*(10+3*sqrt(11))^floor(n/2))/22), n, 1, 25); /* Bruno Berselli, Nov 07 2011 */
-
v=vector(25); v[1]=1; v[2]=7; v[3]=13; v[4]=139; for(i=5, #v, v[i]=20*v[i-2]-v[i-4]); v \\ Bruno Berselli, Nov 07 2011
Terms a(1)-a(7) confirmed, a(8)-a(15) added by
John W. Layman, Nov 04 2011
A001084
a(n) = 20*a(n-1) - a(n-2) with a(0) = 0, a(1) = 3.
Original entry on oeis.org
0, 3, 60, 1197, 23880, 476403, 9504180, 189607197, 3782639760, 75463188003, 1505481120300, 30034159217997, 599177703239640, 11953519905574803, 238471220408256420, 4757470888259553597, 94910946544782815520, 1893461460007396756803, 37774318253603152320540
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- "Questions D'Arithmetique", Question 3686, Solution by H.L. Mennessier, Mathesis, 65(4, Supplement) 1956, pp. 1-12.
- T. D. Noe, Table of n, a(n) for n = 0..200
- H. Brocard, Notes élémentaires sur le problème de Peel, Nouvelle Correspondance Mathématique, 4 (1878), 161-169.
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (20,-1).
-
I:=[0,3]; [n le 2 select I[n] else 20*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
-
A001084:=3*z/(1-20*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
-
LinearRecurrence[{20, -1}, {0, 3}, 20] (* T. D. Noe, Dec 19 2011 *)
CoefficientList[Series[3*x/(1 - 20*x + x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
Table[3 ChebyshevU[-1 + n, 10], {n, 0, 18}] (* Herbert Kociemba, Jun 05 2022 *)
-
nxsqp1(m,n) = { for(x=1,m, y = n*x*x+1; if(issquare(y),print1(x" ")) ) }
-
x='x+O('x^30); concat([0], Vec(3*x/(1 - 20*x + x^2))) \\ G. C. Greubel, Dec 20 2017
A075844
Numbers k such that 11*k^2 + 4 is a square.
Original entry on oeis.org
0, 6, 120, 2394, 47760, 952806, 19008360, 379214394, 7565279520, 150926376006, 3010962240600, 60068318435994, 1198355406479280, 23907039811149606, 476942440816512840, 9514941776519107194, 189821893089565631040
Offset: 0
- A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
-
a:=[0,6];; for n in [3..20] do a[n]:=20*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 06 2019
-
R:=PowerSeriesRing(Integers(), 20); [0] cat Coefficients(R!( 6*x/(1 - 20*x + x^2) )); // G. C. Greubel, Dec 06 2019
-
seq(coeff(series(6*x/(1-20*x+x^2), x, n+1), x, n), n = 0..20); # G. C. Greubel, Dec 06 2019
-
LinearRecurrence[{20,-1},{0,6},20] (* Harvey P. Dale, May 28 2012 *)
-
my(x='x+O('x^20)); concat([0], Vec(6*x/(1-20*x+x^2))) \\ G. C. Greubel, Dec 06 2019
-
def A075844_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 6*x/(1-20*x+x^2) ).list()
A075844_list(20) # G. C. Greubel, Dec 06 2019
A221763
Numbers m such that 11*m^2 - 7 is a square.
Original entry on oeis.org
1, 4, 16, 79, 319, 1576, 6364, 31441, 126961, 627244, 2532856, 12513439, 50530159, 249641536, 1008070324, 4980317281, 20110876321, 99356704084, 401209456096, 1982153764399, 8004078245599, 39543718583896, 159680355455884, 788892217913521
Offset: 1
-
m:=24; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+4*x-4*x^2-x^3)/(1-20*x^2+x^4)));
-
I:=[1,4,16,79]; [n le 4 select I[n] else 20*Self(n-2)-Self(n-4): n in [1..25]]; // Vincenzo Librandi, Aug 18 2013
-
A221763:=proc(q)
local n;
for n from 1 to q do if type(sqrt(11*n^2-7), integer) then print(n);
fi; od; end:
A221763(1000); # Paolo P. Lava, Feb 19 2013
-
LinearRecurrence[{0, 20, 0, -1}, {1, 4, 16, 79}, 24]
CoefficientList[Series[(1 + 4 x - 4 x^2 - x^3)/(1 - 20 x^2 + x^4), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
makelist(expand(((11+2*sqrt(11)*(-1)^n)*(10-3*sqrt(11))^floor(n/2)+(11-2*sqrt(11)*(-1)^n)*(10+3*sqrt(11))^floor(n/2))/22), n, 1, 24);
Showing 1-5 of 5 results.
Comments