A094954
Array T(k,n) read by antidiagonals. G.f.: x(1-x)/(1-kx+x^2), k>1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 13, 1, 1, 5, 19, 41, 34, 1, 1, 6, 29, 91, 153, 89, 1, 1, 7, 41, 169, 436, 571, 233, 1, 1, 8, 55, 281, 985, 2089, 2131, 610, 1, 1, 9, 71, 433, 1926, 5741, 10009, 7953, 1597, 1, 1, 10, 89, 631, 3409, 13201, 33461, 47956, 29681
Offset: 1
1,1,1,1,1,1,1,1,1,1,1,1,1,1, ...
1,2,5,13,34,89,233,610,1597, ...
1,3,11,41,153,571,2131,7953, ...
1,4,19,91,436,2089,10009,47956, ...
1,5,29,169,985,5741,33461,195025, ...
1,6,41,281,1926,13201,90481,620166, ...
Rows are first differences of rows in array
A073134.
Rows 2-14 are
A000012,
A001519,
A079935/
A001835,
A004253,
A001653,
A049685,
A070997,
A070998,
A072256,
A078922,
A077417,
A085260,
A001570. Other rows:
A007805 (k=18),
A075839 (k=20),
A077420 (k=34),
A078988 (k=66).
-
max = 14; row[k_] := Rest[ CoefficientList[ Series[ x*(1-x)/(1-k*x+x^2), {x, 0, max}], x]]; t = Table[ row[k], {k, 2, max+1}]; Flatten[ Table[ t[[k-n+1, n]], {k, 1, max}, {n, 1, k}]] (* Jean-François Alcover, Dec 27 2011 *)
-
T(k,n)=polcoeff(x*(1-x)/(1-k*x+x*x),n)
A238379
Expansion of (1 - x)/(1 - 36*x + x^2).
Original entry on oeis.org
1, 35, 1259, 45289, 1629145, 58603931, 2108112371, 75833441425, 2727895778929, 98128414600019, 3529895029821755, 126978092658983161, 4567681440693572041, 164309553772309610315, 5910576254362452399299, 212616435603275976764449
Offset: 0
Cf. similar sequences with g.f. (1-x)/(1-k*x+x^2):
A122367 (k=3),
A079935 (k=4),
A004253 (k=5),
A001653 (k=6),
A049685 (k=7),
A070997 (k=8),
A070998 (k=9),
A138288 (k=10),
A078922 (k=11),
A077417 (k=12),
A085260 (k=13),
A001570 (k=14),
A160682 (k=15),
A157456 (k=16),
A161595 (k=17). From 18 to 38, even k only, except k=27 and k=31:
A007805 (k=18),
A075839 (k=20),
A157014 (k=22),
A159664 (k=24),
A153111 (k=26),
A097835 (k=27),
A159668 (k=28),
A157877 (k=30),
A111216 (k=31),
A159674 (k=32),
A077420 (k=34), this sequence (k=36),
A097315 (k=38).
-
[n le 2 select 35^(n-1) else 36*Self(n-1)-Self(n-2): n in [1..20]];
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1 - x)/(1 - 36*x + x^2))); // Marius A. Burtea, Jan 14 2020
-
CoefficientList[Series[(1 - x)/(1 - 36 x + x^2), {x, 0, 20}], x] (* or *) LinearRecurrence[{36, -1}, {1, 35}, 20]
-
a(n)=([0,1; -1,36]^n*[1;35])[1,1] \\ Charles R Greathouse IV, May 10 2016
-
m = 20; L. = PowerSeriesRing(ZZ, m); f = (1-x)/(1-36*x+x^2)
print(f.coefficients())
A083043
Integers y such that 11*x^2 - 9*y^2 = 2 for some integer x.
Original entry on oeis.org
1, 21, 419, 8359, 166761, 3326861, 66370459, 1324082319, 26415275921, 526981436101, 10513213446099, 209737287485879, 4184232536271481, 83474913437943741, 1665314036222603339, 33222805811014123039
Offset: 1
-
a:=[1,21];; for n in [3..20] do a[n]:=20*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 06 2019
-
I:=[1,21]; [n le 2 select I[n] else 20*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 06 2019
-
seq(coeff(series( x*(1+x)/(1-20*x+x^2), x, n+1), x, n), n = 1..20); # G. C. Greubel, Dec 06 2019
-
LinearRecurrence[{20,-1},{1,21},20] (* Harvey P. Dale, Jun 02 2014 *)
-
a(n)=subst(poltchebi(n+1)-poltchebi(n),x,10)/9
-
def A083043_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(1+x)/(1-20*x+x^2) ).list()
a=A083043_list(20); a[1:] # G. C. Greubel, Dec 06 2019
A221762
Numbers m such that 11*m^2 + 5 is a square.
Original entry on oeis.org
1, 2, 22, 41, 439, 818, 8758, 16319, 174721, 325562, 3485662, 6494921, 69538519, 129572858, 1387284718, 2584962239, 27676155841, 51569671922, 552135832102, 1028808476201, 11015040486199, 20524599852098, 219748673891878, 409463188565759
Offset: 1
Cf.
A049629 (numbers m such that 20*m^2 + 5 is a square),
A075796 (numbers m such that 5*m^2 + 5 is a square).
-
m:=24; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+2*x^2+x^3)/(1-20*x^2+x^4)));
-
I:=[1,2,22,41]; [n le 4 select I[n] else 20*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 18 2013
-
A221762:=proc(q)
local n;
for n from 1 to q do if type(sqrt(11*n^2+5), integer) then print(n);
fi; od; end:
A221762(1000); # Paolo P. Lava, Feb 19 2013
-
LinearRecurrence[{0, 20, 0, -1}, {1, 2, 22, 41}, 24]
CoefficientList[Series[(1 + 2 x + 2 x^2 + x^3)/(1 - 20 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
makelist(expand(((-11*(-1)^n+4*sqrt(11))*(10+3*sqrt(11))^floor(n/2)-(11*(-1)^n+4*sqrt(11))*(10-3*sqrt(11))^floor(n/2))/22), n, 1, 24);
A075844
Numbers k such that 11*k^2 + 4 is a square.
Original entry on oeis.org
0, 6, 120, 2394, 47760, 952806, 19008360, 379214394, 7565279520, 150926376006, 3010962240600, 60068318435994, 1198355406479280, 23907039811149606, 476942440816512840, 9514941776519107194, 189821893089565631040
Offset: 0
- A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
-
a:=[0,6];; for n in [3..20] do a[n]:=20*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 06 2019
-
R:=PowerSeriesRing(Integers(), 20); [0] cat Coefficients(R!( 6*x/(1 - 20*x + x^2) )); // G. C. Greubel, Dec 06 2019
-
seq(coeff(series(6*x/(1-20*x+x^2), x, n+1), x, n), n = 0..20); # G. C. Greubel, Dec 06 2019
-
LinearRecurrence[{20,-1},{0,6},20] (* Harvey P. Dale, May 28 2012 *)
-
my(x='x+O('x^20)); concat([0], Vec(6*x/(1-20*x+x^2))) \\ G. C. Greubel, Dec 06 2019
-
def A075844_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 6*x/(1-20*x+x^2) ).list()
A075844_list(20) # G. C. Greubel, Dec 06 2019
A238240
Positive integers n such that x^2 - 20xy + y^2 + n = 0 has integer solutions.
Original entry on oeis.org
18, 35, 50, 63, 72, 74, 83, 90, 95, 98, 99, 107, 140, 162, 171, 200, 215, 227, 252, 266, 275, 288, 296, 315, 332, 347, 359, 360, 362, 371, 380, 387, 392, 395, 396, 407, 428, 450, 491, 495, 530, 539, 560, 567, 602, 623, 626, 635, 648, 666, 684, 695, 711, 722, 743, 747, 755, 770, 791, 794, 800, 810
Offset: 1
63 is in the sequence because x^2 - 20xy + y^2 + 63 = 0 has integer solutions, for example (x, y) = (1, 16).
A131216
Numbers X such that 99*X^2 - 2178 is a square.
Original entry on oeis.org
11, 209, 4169, 83171, 1659251, 33101849, 660377729, 13174452731, 262828676891, 5243399085089, 104605153024889, 2086859661412691, 41632588075228931, 830564901843165929, 16569665448788089649, 330562744073918627051
Offset: 1
-
a:=[11,209];; for n in [3..20] do a[n]:=20*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 06 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( 11*x*(1-x)/(1-20*x+x^2) )); // G. C. Greubel, Dec 06 2019
-
seq(coeff(series(11*x*(1-x)/(1-20*x+x^2), x, n+1), x, n), n = 0..20); # G. C. Greubel, Dec 06 2019
-
LinearRecurrence[{20, -1}, {11, 209}, 20] (* G. C. Greubel, Dec 06 2019 *)
-
my(x='x+O('x^20)); Vec(11*x*(1-x)/(1-20*x+x^2)) \\ G. C. Greubel, Dec 06 2019
-
def A131216_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 11*x*(1-x)/(1-20*x+x^2) ).list()
A131216_list(20) # G. C. Greubel, Dec 06 2019
A159680
The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 9*n(j) + 1 = a(j)*a(j) and 11*n(j) + 1 = b(j)*b(j) with positive integer numbers.
Original entry on oeis.org
0, 40, 15960, 6352080, 2528111920, 1006182192120, 400457984351880, 159381271589856160, 63433345634778399840, 25246312181370213280200, 10047968814839710107119800, 3999066341994023252420400240, 1591618356144806414753212175760, 633460106679290959048526025552280
Offset: 1
-
R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!(40*x^2/((1-x)*(1-398*x+x^2)))); // G. C. Greubel, Jun 03 2018
-
for a from 1 by 2 to 100000 do b:=sqrt((9*a*a-2)/7): if (trunc(b)=b) then
n:=(a*a-1)/7: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: end if: end do:
-
LinearRecurrence[{399,-399,1}, {0,40,15960}, 50] (* G. C. Greubel, Jun 03 2018 *)
-
a(n) = round((-20+(10+3*sqrt(11))*(199+60*sqrt(11))^(-n)+(10-3*sqrt(11))*(199+60*sqrt(11))^n)/198) \\ Colin Barker, Jul 26 2016
-
concat(0, Vec(-40*x^2/((x-1)*(x^2-398*x+1)) + O(x^20))) \\ Colin Barker, Jul 26 2016
-
[(10/99)*(chebyshev_U(n, 199) -397*chebyshev_U(n-1, 199) -1) for n in (1..30)] # G. C. Greubel, Jun 26 2022
A269028
a(n) = 40*a(n - 1) - a(n - 2) for n>1, a(0) = 1, a(1) = 1.
Original entry on oeis.org
1, 1, 39, 1559, 62321, 2491281, 99588919, 3981065479, 159143030241, 6361740144161, 254310462736199, 10166056769303799, 406387960309415761, 16245352355607326641, 649407706263983649879, 25960062898203738668519, 1037753108221885563090881
Offset: 0
Cf.
A001519,
A001835,
A001653,
A049685,
A070997,
A070998,
A072256,
A078922,
A160682,
A007805,
A075839,
A157014,
A159664,
A159668,
A157877,
A238379,
A097315.
-
[n le 2 select 1 else 40*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 19 2016
-
Table[Cosh[n Log[20 + Sqrt[399]]] - Sqrt[19/21] Sinh[n Log[20 + Sqrt[399]]], {n, 0, 17}]
Table[(2^(-n - 2) (38 (40 - 2 Sqrt[399])^n + 2 Sqrt[399] (40 - 2 Sqrt[399])^n - 38 (40 + 2 Sqrt[399])^n + 2 Sqrt[399] (40 + 2 Sqrt[399])^n))/Sqrt[399], {n, 0, 17}]
LinearRecurrence[{40, -1}, {1, 1}, 17]
Showing 1-9 of 9 results.
Comments