cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A218395 Numbers whose square is the sum of the squares of 11 consecutive integers.

Original entry on oeis.org

11, 77, 143, 1529, 2849, 30503, 56837, 608531, 1133891, 12140117, 22620983, 242193809, 451285769, 4831736063, 9003094397, 96392527451, 179610602171, 1923018812957, 3583208949023, 38363983731689, 71484568378289, 765356655820823, 1426108158616757
Offset: 0

Views

Author

Paul Weisenhorn, Oct 28 2012

Keywords

Comments

a(n)^2 = Sum_{j=0..10} (x(n)+j)^2 = 11*(x(n)+5)^2 + 110 and b(n) = x(n)+5 give the Pell equation a(n)^2 - 11*b(n)^2 = 110 with the 2 fundamental solutions (11; 1) and (77; 23) and the solution (10; 3) for the unit form. A198949(n+1) = b(n); A106521(n) = x(n) and x(0) = -4.
General: If the sum of the squares of c neighboring numbers is a square with c = 3*k^2-1 and 1 <= k, then a(n)^2 = Sum_{j=0..c-1} (x(n)+j)^2 and b(n) = 2*x(n)+c-1 give the Pell equation a(n)^2 - c*(b(n)/2)^2 = binomial(c+1,3)/2. a(n) = 2*e1*a(n-k) - a(n-2*k); b(n) = 2*e1*b(n-k) - b(n-2*k); a(n) = e1*a(n-k) + c*e2*b(n-k); b(n) = e2*a(n-k) + e1*b(n-k) with the solution (e1; e2) for the unit form.

Examples

			For n=6, Sum_{z=17132..17142} z^2 = 3230444569;
a(6) = sqrt(3230444569) = 56837;
b(6) = sqrt((a(6)^2-110)/11) = 17137; x(6) = b(6)-5 = 17132.
		

Crossrefs

c=2: A001653(n+1) = a(n); A002315(n) = b(n); A001652(n) = x(n).
Cf. A001032 (11 is a term of that sequence), A198947.

Programs

  • Maple
    s:=0: n:=-1:
    for j from -5 to 5 do s:=s+j^2: end do:
    for z from -4 to 100000 do
      s:=s-(z-1)^2+(z+10)^2: r:=sqrt(s):
      if (r=floor(r)) then
        n:=n+1: a(n):=r: x(n):=z:
        b(n):=sqrt((s-110)/11):
        print(n,a(n),b(n),x(n)):
      end if:
    end do:
  • Mathematica
    LinearRecurrence[{0,20,0,-1},{11,77,143,1529},30] (* Harvey P. Dale, Aug 15 2022 *)

Formula

a(n) = 20*a(n-2) - a(n-4); b(n) = 20*b(n-2) - b(n-4);
a(n) = 10*a(n-2) + 33*b(n-2); b(n) = 3*a(n-2) + 10*b(n-2).
a(n) = a(n-1) + 20*a(n-2) - 20*a(n-3) - a(n-4) + a(n-5).
G.f.: 11 * (1-x)*(1+8*x+x^2) / (1 - 20*x^2 + x^4).
With r=sqrt(11); s=10+3*r; t=10-3*r:
a(2*n) = ((11+r)*s^n + (11-r)*t^n)/2.
a(2*n+1) = ((77+23*r) * s^n + (77-23*r)*t^n)/2.
a(n) = 11 * A198947(n+1). - Bill McEachen, Dec 01 2022

A221762 Numbers m such that 11*m^2 + 5 is a square.

Original entry on oeis.org

1, 2, 22, 41, 439, 818, 8758, 16319, 174721, 325562, 3485662, 6494921, 69538519, 129572858, 1387284718, 2584962239, 27676155841, 51569671922, 552135832102, 1028808476201, 11015040486199, 20524599852098, 219748673891878, 409463188565759
Offset: 1

Views

Author

Bruno Berselli, Jan 24 2013

Keywords

Comments

Corresponding squares are: 16, 49, 5329, 18496, 2119936, 7360369, 843728209, 2929407376, ... (subsequence of A016778).
The Diophantine equation 11*x^2+k = y^2, for |k|<11, has integer solutions with the following k values:
k = -10, the nonnegative x values are in A198947;
k = -8, " 2*A075839;
k = -7, " A221763;
k = -2, " A075839;
k = 1, " A001084;
k = 4, " A075844;
k = 5, " this sequence;
k = 9, " 3*A001084.
Also, the Diophantine equation h*x^2+5 = y^2 has infinitely many integer solutions for h = 5, 11, 19, 20, 29, 31, 41, 44, 55, 59, ...
a(n+1)/a(n) tends alternately to (1+sqrt(11))^2/10 and (4+sqrt(11))^2/5.
a(n+2)/a(n) tends to A176395^2/2.

Crossrefs

Cf. A049629 (numbers m such that 20*m^2 + 5 is a square), A075796 (numbers m such that 5*m^2 + 5 is a square).

Programs

  • Magma
    m:=24; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+2*x^2+x^3)/(1-20*x^2+x^4)));
    
  • Magma
    I:=[1,2,22,41]; [n le 4 select I[n] else 20*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 18 2013
  • Maple
    A221762:=proc(q)
    local n;
    for n from 1 to q do if type(sqrt(11*n^2+5), integer) then print(n);
    fi; od; end:
    A221762(1000); # Paolo P. Lava, Feb 19 2013
  • Mathematica
    LinearRecurrence[{0, 20, 0, -1}, {1, 2, 22, 41}, 24]
    CoefficientList[Series[(1 + 2 x + 2 x^2 + x^3)/(1 - 20 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • Maxima
    makelist(expand(((-11*(-1)^n+4*sqrt(11))*(10+3*sqrt(11))^floor(n/2)-(11*(-1)^n+4*sqrt(11))*(10-3*sqrt(11))^floor(n/2))/22), n, 1, 24);
    

Formula

G.f.: x*(1+2*x+2*x^2+x^3)/(1-20*x^2+x^4).
a(n) = -a(1-n) = ((-11*(-1)^n+4*t)*(10+3*t)^floor(n/2)-(11*(-1)^n+4*t)*(10-3*t)^floor(n/2))/22, where t=sqrt(11).
a(n) = 20*a(n-2) - a(n-4) for n>4, a(1)=1, a(2)=2, a(3)=22, a(4)=41.
a(n)*a(n-3)-a(n-1)*a(n-2) = -(3/2)*(9-7*(-1)^n).
a(n+1) + a(n-1) = A198949(n), with a(0)=-1.
2*a(n-1) - a(n) = A001084(n/2-1) for even n.

A198949 y-values in the solution to 11*x^2-10 = y^2.

Original entry on oeis.org

1, 23, 43, 461, 859, 9197, 17137, 183479, 341881, 3660383, 6820483, 73024181, 136067779, 1456823237, 2714535097, 29063440559, 54154634161, 579811987943, 1080378148123, 11567176318301, 21553408328299, 230763714378077, 429987788417857, 4603707111243239
Offset: 1

Views

Author

Sture Sjöstedt, Oct 31 2011

Keywords

Comments

When are both n+1 and 11*n+1 perfect squares? This problem gives the equation 11*x^2-10 = y^2.

Crossrefs

Cf. A198947.

Programs

  • Mathematica
    LinearRecurrence[{0, 20, 0, -1}, {1,23,43,461}, 24]  (* Bruno Berselli, Nov 11 2011 *)
  • Maxima
    makelist(expand(((-(-1)^n-sqrt(11))*(10-3*sqrt(11))^floor(n/2)+(-(-1)^n+sqrt(11))*(10+3*sqrt(11))^floor(n/2))/2), n, 1, 24);  /* Bruno Berselli, Nov 14 2011 */

Formula

a(n+4) = 20*a(n+2)-a(n) with a(1)=1, a(2)=23, a(3)=43, a(4)=461.
G.f.: x*(1+x)*(1+22*x+x^2)/(1-20*x^2+x^4). - Bruno Berselli, Nov 04 2011
a(n) = ((-(-1)^n-t)*(10-3*t)^floor(n/2)+(-(-1)^n+t)*(10+3*t)^floor(n/2))/2 where t=sqrt(11). - Bruno Berselli, Nov 14 2011

Extensions

More terms from Bruno Berselli, Nov 04 2011

A199336 x-values in the solution to 15*x^2 - 14 = y^2.

Original entry on oeis.org

1, 3, 5, 23, 39, 181, 307, 1425, 2417, 11219, 19029, 88327, 149815, 695397, 1179491, 5474849, 9286113, 43103395, 73109413, 339352311, 575589191, 2671715093, 4531604115, 21034368433, 35677243729, 165603232371, 280886345717, 1303791490535, 2211413522007
Offset: 1

Views

Author

Sture Sjöstedt, Nov 05 2011

Keywords

Comments

When are both n+1 and 15*n+1 perfect squares? This problem gives the equation 15*x^2-14 = y^2.
Values of x (or y) in the solutions to x^2 - 8xy + y^2 + 14 = 0. - Colin Barker, Feb 05 2014

Crossrefs

Essentially the second differences of A237262. Cf. also A322780.

Programs

  • Magma
    m:=29; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)*(1+4*x+x^2)/(1-8*x^2+x^4))); // Bruno Berselli, Nov 08 2011
  • Mathematica
    LinearRecurrence[{0, 8, 0, -1}, {1, 3, 5, 23}, 50] (* T. D. Noe, Nov 07 2011 *)

Formula

a(n+4) = 8*a(n+2) - a(n), a(1)=1, a(2)=3, a(3)=5, a(4)=23.
G.f.: x*(1-x)*(1+4*x+x^2)/(1-8*x^2+x^4). - Bruno Berselli, Nov 08 2011

Extensions

More terms from T. D. Noe, Nov 07 2011

A238240 Positive integers n such that x^2 - 20xy + y^2 + n = 0 has integer solutions.

Original entry on oeis.org

18, 35, 50, 63, 72, 74, 83, 90, 95, 98, 99, 107, 140, 162, 171, 200, 215, 227, 252, 266, 275, 288, 296, 315, 332, 347, 359, 360, 362, 371, 380, 387, 392, 395, 396, 407, 428, 450, 491, 495, 530, 539, 560, 567, 602, 623, 626, 635, 648, 666, 684, 695, 711, 722, 743, 747, 755, 770, 791, 794, 800, 810
Offset: 1

Views

Author

Colin Barker, Feb 20 2014

Keywords

Comments

Positive integers n such that x^2 - 99 y^2 + n = 0 has integer solutions. - Robert Israel, Oct 22 2024

Examples

			63 is in the sequence because x^2 - 20xy + y^2 + 63 = 0 has integer solutions, for example (x, y) = (1, 16).
		

Crossrefs

Cf. A075839 (n = 18), A221763 (n = 63), A198947 (n = 90), A001085 (n = 99).

Programs

  • Maple
    filter:= t -> [isolve(99*y^2 - z^2 = t)] <> []:
    select(filter, [$1..1000]); # Robert Israel, Oct 22 2024

Extensions

Corrected by Robert Israel, Oct 22 2024
Showing 1-5 of 5 results.