A218395
Numbers whose square is the sum of the squares of 11 consecutive integers.
Original entry on oeis.org
11, 77, 143, 1529, 2849, 30503, 56837, 608531, 1133891, 12140117, 22620983, 242193809, 451285769, 4831736063, 9003094397, 96392527451, 179610602171, 1923018812957, 3583208949023, 38363983731689, 71484568378289, 765356655820823, 1426108158616757
Offset: 0
For n=6, Sum_{z=17132..17142} z^2 = 3230444569;
a(6) = sqrt(3230444569) = 56837;
b(6) = sqrt((a(6)^2-110)/11) = 17137; x(6) = b(6)-5 = 17132.
-
s:=0: n:=-1:
for j from -5 to 5 do s:=s+j^2: end do:
for z from -4 to 100000 do
s:=s-(z-1)^2+(z+10)^2: r:=sqrt(s):
if (r=floor(r)) then
n:=n+1: a(n):=r: x(n):=z:
b(n):=sqrt((s-110)/11):
print(n,a(n),b(n),x(n)):
end if:
end do:
-
LinearRecurrence[{0,20,0,-1},{11,77,143,1529},30] (* Harvey P. Dale, Aug 15 2022 *)
A106521
Numbers m such that Sum_{k=0..10} (m+k)^2 is a square.
Original entry on oeis.org
18, 38, 456, 854, 9192, 17132, 183474, 341876, 3660378, 6820478, 73024176, 136067774, 1456823232, 2714535092, 29063440554, 54154634156, 579811987938, 1080378148118, 11567176318296, 21553408328294
Offset: 1
Since 18^2 + 19^2 + ... + 28^2 = 5929 = 77^2, 18 is in the sequence. - _Michael B. Porter_, Aug 07 2016
-
LinearRecurrence[{1,20,-20,-1,1},{18,38,456,854,9192},30] (* Harvey P. Dale, May 07 2011 *)
-
A106521(n)={local(xy=[ -4-2*(n%2);11],PQRS=[10,3;33,10],KL=[45;165]);until(0>=n-=2,xy=PQRS*xy+KL);xy[1]} \\ M. F. Hasler, Jan 27 2008
A198947
x values in the solution to 11*x^2 - 10 = y^2.
Original entry on oeis.org
1, 7, 13, 139, 259, 2773, 5167, 55321, 103081, 1103647, 2056453, 22017619, 41025979, 439248733, 818463127, 8762957041, 16328236561, 174819892087, 325746268093, 3487634884699, 6498597125299, 69577877801893, 129646196237887, 1388069921153161, 2586425327632441
Offset: 1
-
m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1-x)*(1+8*x+x^2)/(1-20*x^2+x^4))); // Bruno Berselli, Nov 07 2011
-
LinearRecurrence[{0,20,0,-1},{1,7,13,139},30] (* Vincenzo Librandi, Feb 06 2012 *)
-
makelist(expand(((11+(-1)^n*sqrt(11))*(10-3*sqrt(11))^floor(n/2)+(11-(-1)^n*sqrt(11))*(10+3*sqrt(11))^floor(n/2))/22), n, 1, 25); /* Bruno Berselli, Nov 07 2011 */
-
v=vector(25); v[1]=1; v[2]=7; v[3]=13; v[4]=139; for(i=5, #v, v[i]=20*v[i-2]-v[i-4]); v \\ Bruno Berselli, Nov 07 2011
Terms a(1)-a(7) confirmed, a(8)-a(15) added by
John W. Layman, Nov 04 2011
A221762
Numbers m such that 11*m^2 + 5 is a square.
Original entry on oeis.org
1, 2, 22, 41, 439, 818, 8758, 16319, 174721, 325562, 3485662, 6494921, 69538519, 129572858, 1387284718, 2584962239, 27676155841, 51569671922, 552135832102, 1028808476201, 11015040486199, 20524599852098, 219748673891878, 409463188565759
Offset: 1
Cf.
A049629 (numbers m such that 20*m^2 + 5 is a square),
A075796 (numbers m such that 5*m^2 + 5 is a square).
-
m:=24; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+2*x^2+x^3)/(1-20*x^2+x^4)));
-
I:=[1,2,22,41]; [n le 4 select I[n] else 20*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 18 2013
-
A221762:=proc(q)
local n;
for n from 1 to q do if type(sqrt(11*n^2+5), integer) then print(n);
fi; od; end:
A221762(1000); # Paolo P. Lava, Feb 19 2013
-
LinearRecurrence[{0, 20, 0, -1}, {1, 2, 22, 41}, 24]
CoefficientList[Series[(1 + 2 x + 2 x^2 + x^3)/(1 - 20 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
makelist(expand(((-11*(-1)^n+4*sqrt(11))*(10+3*sqrt(11))^floor(n/2)-(11*(-1)^n+4*sqrt(11))*(10-3*sqrt(11))^floor(n/2))/22), n, 1, 24);
Showing 1-4 of 4 results.
Comments