cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A218395 Numbers whose square is the sum of the squares of 11 consecutive integers.

Original entry on oeis.org

11, 77, 143, 1529, 2849, 30503, 56837, 608531, 1133891, 12140117, 22620983, 242193809, 451285769, 4831736063, 9003094397, 96392527451, 179610602171, 1923018812957, 3583208949023, 38363983731689, 71484568378289, 765356655820823, 1426108158616757
Offset: 0

Views

Author

Paul Weisenhorn, Oct 28 2012

Keywords

Comments

a(n)^2 = Sum_{j=0..10} (x(n)+j)^2 = 11*(x(n)+5)^2 + 110 and b(n) = x(n)+5 give the Pell equation a(n)^2 - 11*b(n)^2 = 110 with the 2 fundamental solutions (11; 1) and (77; 23) and the solution (10; 3) for the unit form. A198949(n+1) = b(n); A106521(n) = x(n) and x(0) = -4.
General: If the sum of the squares of c neighboring numbers is a square with c = 3*k^2-1 and 1 <= k, then a(n)^2 = Sum_{j=0..c-1} (x(n)+j)^2 and b(n) = 2*x(n)+c-1 give the Pell equation a(n)^2 - c*(b(n)/2)^2 = binomial(c+1,3)/2. a(n) = 2*e1*a(n-k) - a(n-2*k); b(n) = 2*e1*b(n-k) - b(n-2*k); a(n) = e1*a(n-k) + c*e2*b(n-k); b(n) = e2*a(n-k) + e1*b(n-k) with the solution (e1; e2) for the unit form.

Examples

			For n=6, Sum_{z=17132..17142} z^2 = 3230444569;
a(6) = sqrt(3230444569) = 56837;
b(6) = sqrt((a(6)^2-110)/11) = 17137; x(6) = b(6)-5 = 17132.
		

Crossrefs

c=2: A001653(n+1) = a(n); A002315(n) = b(n); A001652(n) = x(n).
Cf. A001032 (11 is a term of that sequence), A198947.

Programs

  • Maple
    s:=0: n:=-1:
    for j from -5 to 5 do s:=s+j^2: end do:
    for z from -4 to 100000 do
      s:=s-(z-1)^2+(z+10)^2: r:=sqrt(s):
      if (r=floor(r)) then
        n:=n+1: a(n):=r: x(n):=z:
        b(n):=sqrt((s-110)/11):
        print(n,a(n),b(n),x(n)):
      end if:
    end do:
  • Mathematica
    LinearRecurrence[{0,20,0,-1},{11,77,143,1529},30] (* Harvey P. Dale, Aug 15 2022 *)

Formula

a(n) = 20*a(n-2) - a(n-4); b(n) = 20*b(n-2) - b(n-4);
a(n) = 10*a(n-2) + 33*b(n-2); b(n) = 3*a(n-2) + 10*b(n-2).
a(n) = a(n-1) + 20*a(n-2) - 20*a(n-3) - a(n-4) + a(n-5).
G.f.: 11 * (1-x)*(1+8*x+x^2) / (1 - 20*x^2 + x^4).
With r=sqrt(11); s=10+3*r; t=10-3*r:
a(2*n) = ((11+r)*s^n + (11-r)*t^n)/2.
a(2*n+1) = ((77+23*r) * s^n + (77-23*r)*t^n)/2.
a(n) = 11 * A198947(n+1). - Bill McEachen, Dec 01 2022

A106521 Numbers m such that Sum_{k=0..10} (m+k)^2 is a square.

Original entry on oeis.org

18, 38, 456, 854, 9192, 17132, 183474, 341876, 3660378, 6820478, 73024176, 136067774, 1456823232, 2714535092, 29063440554, 54154634156, 579811987938, 1080378148118, 11567176318296, 21553408328294
Offset: 1

Views

Author

Ralf Stephan, May 30 2005

Keywords

Comments

Equivalently, 11*a(n)^2 + 110*a(n) + 385 is a square.
11*((m+5)^2+10) is a square iff the second factor is divisible by 11 and the quotient is a square, i.e., iff m = 11*k - 4 or m = 11*k - 6 and 11*k^2 +- 2 k + 1 is a square. Thus a(n) == (7,5,5,7,7,5,5,7,...) (mod 11), repeating with period 4 and the values are obtained by solving these Pell-type equations (cf. link to Dario Alpern's quadratic solver). The corresponding recurrence equations (see PARI code) should make it possible to prove the conjectured g.f. - M. F. Hasler, Jan 27 2008
All sequences of this type (i.e., sequences with fixed offset k, and a discernible pattern: k=0...10 for this sequence, k=0..1 for A001652) can be continued using a formula such as x(n) = a*x(n-p) - x(n-2p) + b, where a and b are various constants, and p is the period of the series. Alternatively 'p' can be considered the number of concurrent series. - Daniel Mondot, Aug 05 2016

Examples

			Since 18^2 + 19^2 + ... + 28^2 = 5929 = 77^2, 18 is in the sequence. - _Michael B. Porter_, Aug 07 2016
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,20,-20,-1,1},{18,38,456,854,9192},30] (* Harvey P. Dale, May 07 2011 *)
  • PARI
    A106521(n)={local(xy=[ -4-2*(n%2);11],PQRS=[10,3;33,10],KL=[45;165]);until(0>=n-=2,xy=PQRS*xy+KL);xy[1]} \\ M. F. Hasler, Jan 27 2008

Formula

G.f.: 2*x*(9+10*x+29*x^2-x^3-2*x^4)/(1-x)/(1-20*x^2+x^4). - Vladeta Jovovic, May 31 2005; adapted to the offset by Bruno Berselli, May 16 2011
a(1)=18, a(2)=38, a(3)=456, a(4)=854, a(5)=9192; thereafter a(n)=a(n-1)+20*a(n-2)- 20*a(n-3)-a(n-4)+a(n-5). - Harvey P. Dale, May 07 2011
a(n) = A198949(n+1)-5. - Bruno Berselli, Feb 12 2012
a(1)=18, a(2)=38, a(3)=456, a(4)=854; thereafter a(n) = 20*a(n-2) - a(n-4) + 90. - Daniel Mondot, Aug 05 2016

Extensions

Edited and extended by M. F. Hasler, Jan 27 2008

A198947 x values in the solution to 11*x^2 - 10 = y^2.

Original entry on oeis.org

1, 7, 13, 139, 259, 2773, 5167, 55321, 103081, 1103647, 2056453, 22017619, 41025979, 439248733, 818463127, 8762957041, 16328236561, 174819892087, 325746268093, 3487634884699, 6498597125299, 69577877801893, 129646196237887, 1388069921153161, 2586425327632441
Offset: 1

Views

Author

Sture Sjöstedt, Oct 31 2011

Keywords

Comments

When are n and 11*n+1 perfect squares? This problem gives rise to the Diophantine equation 11*x^2 - 10 = y^2.
Positive values of x (or y) satisfying x^2 - 20xy + y^2 + 90 = 0. - Colin Barker, Feb 18 2014

Crossrefs

Programs

  • Magma
    m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1-x)*(1+8*x+x^2)/(1-20*x^2+x^4))); // Bruno Berselli, Nov 07 2011
    
  • Mathematica
    LinearRecurrence[{0,20,0,-1},{1,7,13,139},30] (* Vincenzo Librandi, Feb 06 2012 *)
  • Maxima
    makelist(expand(((11+(-1)^n*sqrt(11))*(10-3*sqrt(11))^floor(n/2)+(11-(-1)^n*sqrt(11))*(10+3*sqrt(11))^floor(n/2))/22), n, 1, 25); /* Bruno Berselli, Nov 07 2011 */
  • PARI
    v=vector(25); v[1]=1; v[2]=7; v[3]=13; v[4]=139; for(i=5, #v, v[i]=20*v[i-2]-v[i-4]); v \\ Bruno Berselli, Nov 07 2011
    

Formula

a(n+4) = 20*a(n+2) - a(n) with a(1)=1, a(2)=7, a(3)=13, a(4)=139.
From Bruno Berselli, Nov 06 2011: (Start)
G.f.: x*(1-x)*(1+8*x+x^2)/(1-20*x^2+x^4).
a(n) = ((11+(-1)^n*t)*(10-3*t)^floor(n/2)+(11-(-1)^n*t)*(10+3*t)^floor(n/2))/22 with t=sqrt(11). (End).

Extensions

Terms a(1)-a(7) confirmed, a(8)-a(15) added by John W. Layman, Nov 04 2011
a(16)-a(25) from Bruno Berselli, Nov 06 2011

A221762 Numbers m such that 11*m^2 + 5 is a square.

Original entry on oeis.org

1, 2, 22, 41, 439, 818, 8758, 16319, 174721, 325562, 3485662, 6494921, 69538519, 129572858, 1387284718, 2584962239, 27676155841, 51569671922, 552135832102, 1028808476201, 11015040486199, 20524599852098, 219748673891878, 409463188565759
Offset: 1

Views

Author

Bruno Berselli, Jan 24 2013

Keywords

Comments

Corresponding squares are: 16, 49, 5329, 18496, 2119936, 7360369, 843728209, 2929407376, ... (subsequence of A016778).
The Diophantine equation 11*x^2+k = y^2, for |k|<11, has integer solutions with the following k values:
k = -10, the nonnegative x values are in A198947;
k = -8, " 2*A075839;
k = -7, " A221763;
k = -2, " A075839;
k = 1, " A001084;
k = 4, " A075844;
k = 5, " this sequence;
k = 9, " 3*A001084.
Also, the Diophantine equation h*x^2+5 = y^2 has infinitely many integer solutions for h = 5, 11, 19, 20, 29, 31, 41, 44, 55, 59, ...
a(n+1)/a(n) tends alternately to (1+sqrt(11))^2/10 and (4+sqrt(11))^2/5.
a(n+2)/a(n) tends to A176395^2/2.

Crossrefs

Cf. A049629 (numbers m such that 20*m^2 + 5 is a square), A075796 (numbers m such that 5*m^2 + 5 is a square).

Programs

  • Magma
    m:=24; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+2*x^2+x^3)/(1-20*x^2+x^4)));
    
  • Magma
    I:=[1,2,22,41]; [n le 4 select I[n] else 20*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 18 2013
  • Maple
    A221762:=proc(q)
    local n;
    for n from 1 to q do if type(sqrt(11*n^2+5), integer) then print(n);
    fi; od; end:
    A221762(1000); # Paolo P. Lava, Feb 19 2013
  • Mathematica
    LinearRecurrence[{0, 20, 0, -1}, {1, 2, 22, 41}, 24]
    CoefficientList[Series[(1 + 2 x + 2 x^2 + x^3)/(1 - 20 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • Maxima
    makelist(expand(((-11*(-1)^n+4*sqrt(11))*(10+3*sqrt(11))^floor(n/2)-(11*(-1)^n+4*sqrt(11))*(10-3*sqrt(11))^floor(n/2))/22), n, 1, 24);
    

Formula

G.f.: x*(1+2*x+2*x^2+x^3)/(1-20*x^2+x^4).
a(n) = -a(1-n) = ((-11*(-1)^n+4*t)*(10+3*t)^floor(n/2)-(11*(-1)^n+4*t)*(10-3*t)^floor(n/2))/22, where t=sqrt(11).
a(n) = 20*a(n-2) - a(n-4) for n>4, a(1)=1, a(2)=2, a(3)=22, a(4)=41.
a(n)*a(n-3)-a(n-1)*a(n-2) = -(3/2)*(9-7*(-1)^n).
a(n+1) + a(n-1) = A198949(n), with a(0)=-1.
2*a(n-1) - a(n) = A001084(n/2-1) for even n.
Showing 1-4 of 4 results.