cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A075843 Numbers k such that 99*k^2 + 1 is a square.

Original entry on oeis.org

0, 1, 20, 399, 7960, 158801, 3168060, 63202399, 1260879920, 25154396001, 501827040100, 10011386405999, 199725901079880, 3984506635191601, 79490406802752140, 1585823629419851199, 31636982181594271840
Offset: 0

Views

Author

Gregory V. Richardson, Oct 14 2002

Keywords

Comments

From Wolfdieter Lang, Nov 08 2002: (Start)
Chebyshev's polynomials U(n,x) evaluated at x=10.
The a(n) give all (unsigned, integer) solutions of Pell equation b(n)^2 - 99*a(n)^2 = +1 with b(n)= A001085(n). (End)
For n>=2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 20's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imagianry unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,19}. - Milan Janjic, Jan 25 2015

References

  • A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

Crossrefs

Cf. A001084.
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), this sequence (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    m:=10;; a:=[0,1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 20*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
    
  • Maple
    seq( simplify(ChebyshevU(n-1, 10)), n=0..20); # G. C. Greubel, Dec 22 2019
  • Mathematica
    Table[GegenbauerC[n-1, 1, 10], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    CoefficientList[Series[x/(1-20x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
    ChebyshevU[Range[22] -2, 10] (* G. C. Greubel, Dec 22 2019 *)
    LinearRecurrence[{20,-1},{0,1},20] (* Harvey P. Dale, Dec 03 2023 *)
  • PARI
    vector( 22, n, polchebyshev(n-2, 2, 10) ) \\ G. C. Greubel, Dec 22 2019
    
  • Sage
    [lucas_number1(n,20,1) for n in range(0,20)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [chebyshev_U(n-1,10) for n in (0..20)] # G. C. Greubel, Dec 22 2019
    

Formula

a(n) = ((10+3*sqrt(11))^n - (10-3*sqrt(11))^n) / (6*sqrt(11)).
a(n) = 20*a(n-1) - a(n-2), n>=1, a(0)=0, a(1)=1.
a(n) = S(n-1, 20), with S(n, x) := U(n, x/2), Chebyshev's polynomials of the second kind. S(-1, x) := 0. See A049310.
G.f.: x/(1 - 20*x + x^2).
a(n) = sqrt((A001085(n)^2 - 1)/99).
Lim_{n->inf.} a(n)/a(n-1) = 10 + 3*sqrt(11).
a(n+1) = Sum_{k=0..n} A101950(n,k)*19^k. - Philippe Deléham, Feb 10 2012
Product_{n>=1} (1 + 1/a(n)) = 1/3*(3 + sqrt(11)). - Peter Bala, Dec 23 2012
Product_{n>=2} (1 - 1/a(n)) = 3/20*(3 + sqrt(11)). - Peter Bala, Dec 23 2012

A001085 a(n) = 20*a(n-1) - a(n-2).

Original entry on oeis.org

1, 10, 199, 3970, 79201, 1580050, 31521799, 628855930, 12545596801, 250283080090, 4993116004999, 99612037019890, 1987247624392801, 39645340450836130, 790919561392329799, 15778745887395759850, 314783998186522867201, 6279901217843061584170
Offset: 0

Views

Author

Keywords

Comments

From Wolfdieter Lang, Nov 08 2002: (Start)
Chebyshev's polynomials T(n,x) evaluated at x=10.
The a(n) give all (unsigned, integer) solutions of Pell equation a(n)^2 - 99*b(n)^2 = +1 with b(n) = A075843(n), n >= 0. (End)
a(11+22k) - 1 and a(11+22k) + 1 are consecutive odd powerful numbers. The first pair is 99612037019890 +- 1. See A076445. - T. D. Noe, May 04 2006
This sequence gives the values of x in solutions of the Diophantine equation x^2 - 11*y^2 = 1. The corresponding y values are in A001084.
Except for the first term, positive values of x (or y) satisfying x^2 - 20xy + y^2 + 99 = 0. - Colin Barker, Feb 18 2014

Examples

			G.f. = 1 + 10*x + 199*x^2 + 3970*x^3 + 79201*x^4 + 1580050*x^5 + 31521799*x^6 + ...
		

References

  • Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From N. J. A. Sloane, May 30 2012
  • "Questions D'Arithmétique", Question 3686, Solution by H.L. Mennessier, Mathesis, 65(4, Supplement) 1956, pp. 1-12.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[1,10];; for n in [3..30] do a[n]:=20*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jun 06 2019
  • Magma
    I:=[1,10]; [n le 2 select I[n] else 20*Self(n-1)-Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 20 2017
    
  • Mathematica
    LinearRecurrence[{20, -1}, {1, 10}, 30] (* T. D. Noe, Dec 19 2011 *)
    a[ n_] := ChebyshevT[ n, 10]; (* Michael Somos, May 27 2014 *)
    a[ n_] := ((10 + Sqrt[99])^n + (10 - Sqrt[99])^n) / 2 // Simplify; (* Michael Somos, May 27 2014 *)
    a[ n_] := With[{m = Abs @ n}, SeriesCoefficient[ (1 - 10 x) / (1 - 20 x + x^2), {x, 0, m}]]; (* Michael Somos, May 27 2014 *)
    Table[LucasL[n, 20*I]*(-I)^n/2, {n,0,30}] (* G. C. Greubel, Jun 06 2019 *)
  • PARI
    {a(n) = n=abs(n); polsym( 1 - 20*x + x^2, n) [n+1] / 2}; /* Michael Somos, May 27 2014 */
    
  • PARI
    my(x='x+O('x^30)); Vec((1-10*x)/(1-20*x+x^2)) \\ G. C. Greubel, Dec 20 2017
    
  • Sage
    [lucas_number2(n,20,1)/2 for n in range(0,20)] # Zerinvary Lajos, Jun 27 2008
    

Formula

For all members x of the sequence, 11*x^2 - 11 is a square. Limit_{n->infinity} a(n)/a(n-1) = 10 + 3*sqrt(11). - Gregory V. Richardson, Oct 13 2002
a(n) = T(n, 10) = (S(n, 20)-S(n-2, 20))/2, with S(n, x) := U(n, x/2) and T(n), resp. U(n, x), are Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(-2, x) := -1, S(-1, x) := 0, S(n-1, 20)= A075843(n).
G.f.: (1-10*x)/(1-20*x+x^2). - Simon Plouffe in his 1992 dissertation
a(n) = (((10+3*sqrt(11))^n + (10-3*sqrt(11))^n))/2.
a(n) = sqrt(99*A075843(n)^2 + 1), (cf. Richardson comment).
a(n) = (-i)^n*Lucas(n, 20*i)/2, where i = sqrt(-1) and Lucas(n, x) is the Lucas polynomial. - G. C. Greubel, Jun 06 2019

A221762 Numbers m such that 11*m^2 + 5 is a square.

Original entry on oeis.org

1, 2, 22, 41, 439, 818, 8758, 16319, 174721, 325562, 3485662, 6494921, 69538519, 129572858, 1387284718, 2584962239, 27676155841, 51569671922, 552135832102, 1028808476201, 11015040486199, 20524599852098, 219748673891878, 409463188565759
Offset: 1

Views

Author

Bruno Berselli, Jan 24 2013

Keywords

Comments

Corresponding squares are: 16, 49, 5329, 18496, 2119936, 7360369, 843728209, 2929407376, ... (subsequence of A016778).
The Diophantine equation 11*x^2+k = y^2, for |k|<11, has integer solutions with the following k values:
k = -10, the nonnegative x values are in A198947;
k = -8, " 2*A075839;
k = -7, " A221763;
k = -2, " A075839;
k = 1, " A001084;
k = 4, " A075844;
k = 5, " this sequence;
k = 9, " 3*A001084.
Also, the Diophantine equation h*x^2+5 = y^2 has infinitely many integer solutions for h = 5, 11, 19, 20, 29, 31, 41, 44, 55, 59, ...
a(n+1)/a(n) tends alternately to (1+sqrt(11))^2/10 and (4+sqrt(11))^2/5.
a(n+2)/a(n) tends to A176395^2/2.

Crossrefs

Cf. A049629 (numbers m such that 20*m^2 + 5 is a square), A075796 (numbers m such that 5*m^2 + 5 is a square).

Programs

  • Magma
    m:=24; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+2*x^2+x^3)/(1-20*x^2+x^4)));
    
  • Magma
    I:=[1,2,22,41]; [n le 4 select I[n] else 20*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 18 2013
  • Maple
    A221762:=proc(q)
    local n;
    for n from 1 to q do if type(sqrt(11*n^2+5), integer) then print(n);
    fi; od; end:
    A221762(1000); # Paolo P. Lava, Feb 19 2013
  • Mathematica
    LinearRecurrence[{0, 20, 0, -1}, {1, 2, 22, 41}, 24]
    CoefficientList[Series[(1 + 2 x + 2 x^2 + x^3)/(1 - 20 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • Maxima
    makelist(expand(((-11*(-1)^n+4*sqrt(11))*(10+3*sqrt(11))^floor(n/2)-(11*(-1)^n+4*sqrt(11))*(10-3*sqrt(11))^floor(n/2))/22), n, 1, 24);
    

Formula

G.f.: x*(1+2*x+2*x^2+x^3)/(1-20*x^2+x^4).
a(n) = -a(1-n) = ((-11*(-1)^n+4*t)*(10+3*t)^floor(n/2)-(11*(-1)^n+4*t)*(10-3*t)^floor(n/2))/22, where t=sqrt(11).
a(n) = 20*a(n-2) - a(n-4) for n>4, a(1)=1, a(2)=2, a(3)=22, a(4)=41.
a(n)*a(n-3)-a(n-1)*a(n-2) = -(3/2)*(9-7*(-1)^n).
a(n+1) + a(n-1) = A198949(n), with a(0)=-1.
2*a(n-1) - a(n) = A001084(n/2-1) for even n.

A207832 Numbers x such that 20*x^2 + 1 is a perfect square.

Original entry on oeis.org

0, 2, 36, 646, 11592, 208010, 3732588, 66978574, 1201881744, 21566892818, 387002188980, 6944472508822, 124613502969816, 2236098580947866, 40125160954091772, 720016798592704030
Offset: 0

Views

Author

Gary Detlefs, Feb 20 2012

Keywords

Comments

Denote as {a,b,c,d} the second-order linear recurrence a(n) = c*a(n-1) + d*a(n-2) with initial terms a, b. The following sequences and recurrence formulas are related to integer solutions of k*x^2 + 1 = y^2.
.
k x y
- ----------------------- -----------------------
2 A001542 {0,2,6,-1} A001541 {1,3,6,-1}
3 A001353 {0,1,4,-1} A001075 {1,2,4,-1}
5 A060645 {0,4,18,-1} A023039 {1,9,18,-1}
6 A001078 {0,2,10,-1} A001079 {1,5,10,-1}
7 A001080 {0,3,16,-1} A001081 {1,8,16,-1}
8 A001109 {0,1,6,-1} A001541 {1,3,6,-1}
10 A084070 {0,1,38,-1} A078986 {1,19,38,-1}
11 A001084 {0,3,20,-1} A001085 {1,10,20,-1}
12 A011944 {0,2,14,-1} A011943 {1,7,14,-1}
13 A075871 {0,180,1298,-1} A114047 {1,649,1298,-1}
14 A068204 {0,4,30,-1} A069203 {1,15,30,-1}
15 A001090 {0,1,8,-1} A001091 {1,4,8,-1}
17 A121740 {0,8,66,-1} A099370 {1,33,66,-1}
18 A202299 {0,4,34,-1} A056771 {1,17,34,-1}
19 A174765 {0,39,340,-1} A114048 {1,179,340,-1}
20 a(n) {0,2,18,-1} A023039 {1,9,18,-1}
21 A174745 {0,12,110,-1} A114049 {1,55,110,-1}
22 A174766 {0,42,394,-1} A114050 {1,197,394,-1}
23 A174767 {0,5,48,-1} A114051 {1,24,48,-1}
24 A004189 {0,1,10,-1} A001079 {1,5,10,-1}
26 A174768 {0,10,102,-1} A099397 {1,51,102,-1}
The sequence of the c parameter is listed in A180495.

Crossrefs

Programs

  • Magma
    m:=16; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x/(1-18*x+x^2))); // Bruno Berselli, Jun 19 2019
    
  • Maple
    readlib(issqr):for x from 1 to 720016798592704030 do if issqr(20*x^2+1) then print(x) fi od;
  • Mathematica
    LinearRecurrence[{18, -1}, {0, 2}, 16] (* Bruno Berselli, Feb 21 2012 *)
    Table[2 ChebyshevU[-1 + n, 9], {n, 0, 16}]  (* Herbert Kociemba, Jun 05 2022 *)
  • Maxima
    makelist(expand(((2+sqrt(5))^(2*n)-(2-sqrt(5))^(2*n))/(4*sqrt(5))), n, 0, 15); /* Bruno Berselli, Jun 19 2019 */

Formula

a(n) = 18*a(n-1) - a(n-2).
From Bruno Berselli, Feb 21 2012: (Start)
G.f.: 2*x/(1-18*x+x^2).
a(n) = -a(-n) = 2*A049660(n) = ((2 + sqrt(5))^(2*n)-(2 - sqrt(5))^(2*n))/(4*sqrt(5)). (End)
a(n) = Fibonacci(6*n)/4. - Bruno Berselli, Jun 19 2019
For n>=1, a(n) = A079962(6n-3). - Christopher Hohl, Aug 22 2021
Showing 1-4 of 4 results.