A075843
Numbers k such that 99*k^2 + 1 is a square.
Original entry on oeis.org
0, 1, 20, 399, 7960, 158801, 3168060, 63202399, 1260879920, 25154396001, 501827040100, 10011386405999, 199725901079880, 3984506635191601, 79490406802752140, 1585823629419851199, 31636982181594271840
Offset: 0
- A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
Chebyshev sequence U(n, m):
A000027 (m=1),
A001353 (m=2),
A001109 (m=3),
A001090 (m=4),
A004189 (m=5),
A004191 (m=6),
A007655 (m=7),
A077412 (m=8),
A049660 (m=9), this sequence (m=10),
A077421 (m=11),
A077423 (m=12),
A097309 (m=13),
A097311 (m=14),
A097313 (m=15),
A029548 (m=16),
A029547 (m=17),
A144128 (m=18),
A078987 (m=19),
A097316 (m=33).
-
m:=10;; a:=[0,1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
-
I:=[0,1]; [n le 2 select I[n] else 20*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
-
seq( simplify(ChebyshevU(n-1, 10)), n=0..20); # G. C. Greubel, Dec 22 2019
-
Table[GegenbauerC[n-1, 1, 10], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
CoefficientList[Series[x/(1-20x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
ChebyshevU[Range[22] -2, 10] (* G. C. Greubel, Dec 22 2019 *)
LinearRecurrence[{20,-1},{0,1},20] (* Harvey P. Dale, Dec 03 2023 *)
-
vector( 22, n, polchebyshev(n-2, 2, 10) ) \\ G. C. Greubel, Dec 22 2019
-
[lucas_number1(n,20,1) for n in range(0,20)] # Zerinvary Lajos, Jun 25 2008
-
[chebyshev_U(n-1,10) for n in (0..20)] # G. C. Greubel, Dec 22 2019
A001085
a(n) = 20*a(n-1) - a(n-2).
Original entry on oeis.org
1, 10, 199, 3970, 79201, 1580050, 31521799, 628855930, 12545596801, 250283080090, 4993116004999, 99612037019890, 1987247624392801, 39645340450836130, 790919561392329799, 15778745887395759850, 314783998186522867201, 6279901217843061584170
Offset: 0
G.f. = 1 + 10*x + 199*x^2 + 3970*x^3 + 79201*x^4 + 1580050*x^5 + 31521799*x^6 + ...
- Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From N. J. A. Sloane, May 30 2012
- "Questions D'Arithmétique", Question 3686, Solution by H.L. Mennessier, Mathesis, 65(4, Supplement) 1956, pp. 1-12.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- H. Brocard, Notes élémentaires sur le problème de Peel, Nouvelle Correspondance Mathématique, 4 (1878), 161-169.
- Tanya Khovanova, Recursive Sequences
- Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (20,-1).
-
a:=[1,10];; for n in [3..30] do a[n]:=20*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jun 06 2019
-
I:=[1,10]; [n le 2 select I[n] else 20*Self(n-1)-Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 20 2017
-
LinearRecurrence[{20, -1}, {1, 10}, 30] (* T. D. Noe, Dec 19 2011 *)
a[ n_] := ChebyshevT[ n, 10]; (* Michael Somos, May 27 2014 *)
a[ n_] := ((10 + Sqrt[99])^n + (10 - Sqrt[99])^n) / 2 // Simplify; (* Michael Somos, May 27 2014 *)
a[ n_] := With[{m = Abs @ n}, SeriesCoefficient[ (1 - 10 x) / (1 - 20 x + x^2), {x, 0, m}]]; (* Michael Somos, May 27 2014 *)
Table[LucasL[n, 20*I]*(-I)^n/2, {n,0,30}] (* G. C. Greubel, Jun 06 2019 *)
-
{a(n) = n=abs(n); polsym( 1 - 20*x + x^2, n) [n+1] / 2}; /* Michael Somos, May 27 2014 */
-
my(x='x+O('x^30)); Vec((1-10*x)/(1-20*x+x^2)) \\ G. C. Greubel, Dec 20 2017
-
[lucas_number2(n,20,1)/2 for n in range(0,20)] # Zerinvary Lajos, Jun 27 2008
A221762
Numbers m such that 11*m^2 + 5 is a square.
Original entry on oeis.org
1, 2, 22, 41, 439, 818, 8758, 16319, 174721, 325562, 3485662, 6494921, 69538519, 129572858, 1387284718, 2584962239, 27676155841, 51569671922, 552135832102, 1028808476201, 11015040486199, 20524599852098, 219748673891878, 409463188565759
Offset: 1
Cf.
A049629 (numbers m such that 20*m^2 + 5 is a square),
A075796 (numbers m such that 5*m^2 + 5 is a square).
-
m:=24; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+2*x^2+x^3)/(1-20*x^2+x^4)));
-
I:=[1,2,22,41]; [n le 4 select I[n] else 20*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 18 2013
-
A221762:=proc(q)
local n;
for n from 1 to q do if type(sqrt(11*n^2+5), integer) then print(n);
fi; od; end:
A221762(1000); # Paolo P. Lava, Feb 19 2013
-
LinearRecurrence[{0, 20, 0, -1}, {1, 2, 22, 41}, 24]
CoefficientList[Series[(1 + 2 x + 2 x^2 + x^3)/(1 - 20 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
makelist(expand(((-11*(-1)^n+4*sqrt(11))*(10+3*sqrt(11))^floor(n/2)-(11*(-1)^n+4*sqrt(11))*(10-3*sqrt(11))^floor(n/2))/22), n, 1, 24);
A207832
Numbers x such that 20*x^2 + 1 is a perfect square.
Original entry on oeis.org
0, 2, 36, 646, 11592, 208010, 3732588, 66978574, 1201881744, 21566892818, 387002188980, 6944472508822, 124613502969816, 2236098580947866, 40125160954091772, 720016798592704030
Offset: 0
- Bruno Berselli, Table of n, a(n) for n = 0..500
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Index entries for linear recurrences with constant coefficients, signature (18,-1).
-
m:=16; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x/(1-18*x+x^2))); // Bruno Berselli, Jun 19 2019
-
readlib(issqr):for x from 1 to 720016798592704030 do if issqr(20*x^2+1) then print(x) fi od;
-
LinearRecurrence[{18, -1}, {0, 2}, 16] (* Bruno Berselli, Feb 21 2012 *)
Table[2 ChebyshevU[-1 + n, 9], {n, 0, 16}] (* Herbert Kociemba, Jun 05 2022 *)
-
makelist(expand(((2+sqrt(5))^(2*n)-(2-sqrt(5))^(2*n))/(4*sqrt(5))), n, 0, 15); /* Bruno Berselli, Jun 19 2019 */
Showing 1-4 of 4 results.
Comments