cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A085000 Maximal determinant of an n X n matrix using the integers 1 to n^2.

Original entry on oeis.org

1, 10, 412, 40800, 6839492, 1865999570, 762150368499
Offset: 1

Views

Author

Robert G. Wilson v, Jun 16 2003

Keywords

Comments

Bounds for the next terms and the corresponding matrices are given by O. Gasper, H. Pfoertner and M. Sigg: 440960274696935 <= a(8) < 441077015225642, 346254605664223620 <= a(9) < 346335386150480625, 356944784622927045792 <= a(10) < 357017114947987625629. a(n) < sqrt(3*((n^5+n^4+n^3+n^2)/12)^n*(n^2+1)/(n+1)). - Hugo Pfoertner, Aug 15 2010
Improved lower bounds (private communication from Benjamin R. Buhrow, Dec 09 2019): a(8) >= 440970981670289, a(9) >= 346260899916111296. - Hugo Pfoertner, Jan 25 2021
Improved lower bound (private communication from Richard Gosiorovsky, Aug 18 2021): a(10) >= 356948996371054862392. - Hugo Pfoertner, Aug 24 2021

Examples

			The following 3 X 3 matrix is one of 36 whose determinant is 412 (there are also 36 whose determinant is -412):
   9 3 5
   4 8 1
   2 6 7
Results from a specially adapted hill-climbing algorithm strongly suggest that a(5) = 6839492. a(6) is at least 1862125166. Heuristically, a(n) is approximately 0.44*n^(2.06*n), suggesting that a(7) is close to 6.8*10^11. - Tim Paulden (timmy(AT)cantab.net), Sep 21 2003
a(5) confirmed by _Robert Israel_ and _Hugo Pfoertner_. A corresponding matrix is ((25 15 9 11 4) (7 24 14 3 17) (6 12 23 20 5) (10 13 2 22 19) (16 1 18 8 21) ). - _Hugo Pfoertner_, Sep 23 2003
a(6) found with FORTRAN program given at Pfoertner link. A corresponding matrix is ((36 24 21 17 5 8) ( 3 35 25 15 23 11) (13 7 34 16 10 31) (14 22 2 33 12 28) (20 4 19 29 32 6) (26 18 9 1 30 27) ). - _Hugo Pfoertner_, Sep 23 2003
a(7) is the determinant of the matrix ((46 42 15 2 27 24 18) (9 48 36 30 7 14 31) (39 11 44 34 13 29 5) (26 22 17 41 47 1 21) (20 8 40 6 33 23 45) (4 28 19 25 38 49 12) (32 16 3 37 10 35 43)). Although no proof for the optimality of a(7) is available, the results of an extensive computational search make the existence of a better solution extremely unlikely. A total of approximately 15 CPU years on SGI Origin 3000 and of 3.8 CPU years on SGI Altix 3000 computers was used for this result.
		

Crossrefs

Programs

  • Mathematica
    Needs["DiscreteMath`Combinatorica`"]; n=3; n2=n^2; dMax=0; mMax={}; p=Range[n2]; Do[m=Partition[p, n]; d=Det[m]; If[d>dMax, dMax=d; mMax=m]; p=NextPermutation[p], {k, n2!}]; {dMax, mMax} (* T. D. Noe *)
  • PARI
    vectomat(v)=my(n=sqrtint(#v));matrix(n,n,i,j,v[n*(i-1)+j])
    a(n)=my(m,t,M); n*=n; for(k=0,(n-1)!-1, t=matdet(M=vectomat(numtoperm(n,k))); if(abs(t)>m, m=abs(t); print(t" "M)));m \\ Charles R Greathouse IV, Sep 13 2013

Extensions

a(4) from Marsac Laurent (jko(AT)rox0r.net), Sep 15 2003
a(6) from Hugo Pfoertner, Sep 23 2003
Entry edited by N. J. A. Sloane, Nov 22 2006, to remove some erroneous entries. Further edits Nov 25 2006.
a(7) from Hugo Pfoertner, Jan 22 2008

A136609 (1/(n!)^2) * number of ways to arrange the consecutive numbers 1...n^2 in an n X n matrix with determinant = 0.

Original entry on oeis.org

0, 0, 76, 14392910
Offset: 1

Views

Author

Hugo Pfoertner, Jan 21 2008

Keywords

Comments

The computation of a(5) seems to be currently (Jan 2008) out of reach (compare with A088021(5)).

Examples

			a(1)=0 because det((1))/=0, a(2)=0, because the only possible determinants of a matrix with elements {1,2,3,4} are +-2, +-5 and +-10.
		

Crossrefs

Cf. A001044, A046747, a(3)=A088215(0), a(4)=A136608(0), A221976.

A309984 Number of n X n Latin squares with determinant 0, divided by 2.

Original entry on oeis.org

0, 0, 0, 16, 0, 2088, 5752, 199600889
Offset: 1

Views

Author

Hugo Pfoertner, Aug 26 2019

Keywords

Examples

			a(4)=16: There are 2*a(4) = 32 4 X 4 Latin squares with determinant = 0, one of which is
  [1  4  3  2]
  [4  1  2  3]
  [3  2  1  4]
  [2  3  4  1].
An example of a 6 X 6 Latin square with determinant = 0 is
  [1  3  4  6  5  2]
  [3  2  6  5  4  1]
  [4  6  3  2  1  5]
  [6  5  1  3  2  4]
  [5  4  2  1  3  6]
  [2  1  5  4  6  3].
		

Crossrefs

A364206 a(n) is the number of n X n nonsingular matrices using all the integers from 1 to n^2.

Original entry on oeis.org

1, 24, 360144, 20914499571840
Offset: 1

Views

Author

Stefano Spezia, Jul 13 2023

Keywords

Crossrefs

Right diagonal of A364203.
Cf. A085000 (maximal determinant), A350565 (minimal permanent), A350566 (maximal permanent).
Cf. A364227 (with prime numbers).

Formula

a(n) = (n^2)! - A221976(n). - Vaclav Kotesovec, Jul 16 2023

Extensions

a(4) from Vaclav Kotesovec, Jul 16 2023 (using A221976)

A372708 a(n) is the smallest number k that is the concatenation of the elements of a 3 X 3 matrix whose determinant is n and whose elements are a permutation of the numbers 1 through 9; a(n) = -1 if no such number k exists.

Original entry on oeis.org

123456789, 123469857, 123467589, 123467895, 123458769, 123469578, 123589476, 123457689, 123748569, 123456798, 123469587, 123469875, 123458967, 123457986, 123469785, 123457698, 123548769, 123689574, 123546789, 123457896, 123569487, 123458697, 123547689, 123649758, 123567498
Offset: 0

Views

Author

Jean-Marc Rebert, May 11 2024

Keywords

Comments

The determinant of a 3 X 3 matrix whose elements are a permutation of the numbers 1..9 cannot exceed 412, so this sequence is finite.

Examples

			a(0) = 123456789 because it is the smallest number that can be formed by concatenating the elements of a 3 X 3 matrix whose determinant is 0 and whose elements are a permutation of the numbers 1..9. The matrix is [1 2 3] [4 5 6] [7 8 9].
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Module[{mat}, mat = Select[Partition[#, 3] & /@ Permutations[Range[1, 9]], Det[#] == n &]; If[Length[mat] > 0, First[Sort[ToExpression[StringJoin[Riffle[ToString /@ Flatten[#], ""]]] & /@ mat]], 0]];
    Monitor[(* Do not use Monitor[] if using Wolfram Cloud, otherwise memory issues may occur *)Table[a[n], {n, 0, 24}], {n, Table[a[m], {m, 0, n - 1}]}] (* Robert P. P. McKone, May 11 2024 *)
  • Python
    from sympy import Matrix
    from itertools import permutations
    adict = dict()
    for p in permutations(range(1, 10)):
        v = Matrix(3, 3, p).det()
        if v not in adict:
            adict[v] = int("".join(map(str, p)))
    afull = [adict[v] if v in adict else -1 for v in range(max(adict)+1)]
    print(afull) # Michael S. Branicky, May 11 2024
Showing 1-5 of 5 results.