cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222006 Number of forests of rooted plane binary trees (all nodes have outdegree of 0 or 2) with n total nodes.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 10, 12, 27, 35, 79, 104, 244, 331, 789, 1083, 2615, 3652, 8880, 12523, 30657, 43661, 107326, 153985, 379945, 548776, 1357922, 1972153, 4892140, 7139850, 17747863, 26011843, 64776658, 95296413, 237689691, 350844814, 876313458, 1297367201, 3244521203, 4816399289
Offset: 0

Views

Author

Geoffrey Critzer, Feb 23 2013

Keywords

Comments

Here, the binary trees are sized by total number of nodes.

Examples

			a(6) = 5: There is one forest with 6 trees, one forest with 4 trees and 3 forests with 2 trees, namely
1)...o..o..o..o..o..o...............
....................................
2)...o..o..o....o...................
.............../.\..................
..............o...o.................
....................................
3)...o........o.....................
..../.\....../.\....................
...o...o....o...o...................
....................................
4).....o....o.....5)......o.....o...
....../.\................/.\........
.....o...o..............o...o.......
..../.\..................../.\......
...o...o..................o...o.....
		

Crossrefs

Row sums of A342770.

Programs

  • Maple
    b:= proc(n) option remember; `if`(irem(n, 2)=0, 0,
          `if`(n<2, n, add(b(i)*b(n-1-i), i=1..n-2)))
        end:
    g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(g(n-i*j, i-2)*binomial(b(i)+j-1, j), j=0..n/i)))
        end:
    a:= n-> g(n, iquo(n-1, 2)*2+1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 26 2013
  • Mathematica
    nn=40;a=Drop[CoefficientList[Series[t=(1-(1-4x^2)^(1/2))/(2x),{x,0,nn}],x],1];CoefficientList[Series[Product[1/(1-x^i)^a[[i]],{i,1,nn-1}],{x,0,nn}],x]

Formula

O.g.f.: Product_{i>=1} 1/(1 - x^i)^A126120(i-1).
a(n) ~ c * 2^n / n^(3/2), where c = 1.165663931402962361339366557... if n is even, c = 1.490999501305559555120304528... if n is odd. - Vaclav Kotesovec, Aug 31 2014