cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222171 Decimal expansion of Pi^2/24.

Original entry on oeis.org

4, 1, 1, 2, 3, 3, 5, 1, 6, 7, 1, 2, 0, 5, 6, 6, 0, 9, 1, 1, 8, 1, 0, 3, 7, 9, 1, 6, 6, 1, 5, 0, 6, 2, 9, 7, 3, 0, 4, 7, 3, 7, 4, 7, 5, 3, 0, 1, 6, 9, 9, 6, 0, 9, 4, 3, 3, 8, 8, 9, 5, 5, 7, 3, 4, 2, 5, 0, 1, 8, 6, 7, 6, 0, 0, 8, 0, 0, 2, 1, 8, 4, 5, 8, 4, 0, 7, 2, 2, 5, 1, 5, 4, 9, 3, 9, 6, 7, 6, 3
Offset: 0

Views

Author

Jean-François Alcover, May 13 2013

Keywords

Examples

			0.411233516712056609118103791661506297304737475301699609433889557342501867600...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press, 2006, p. 242.
  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 3.45, p. 158 and 199-200.

Crossrefs

Programs

  • Magma
    pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^100*(pi)^2/24))); // Vincenzo Librandi, Sep 25 2015
    
  • Mathematica
    RealDigits[Pi^2/24, 10, 100] // First
  • PARI
    Pi^2/24 \\ Michel Marcus, Dec 10 2020

Formula

Equals Integral_{x=0..Pi/2} log(sec(x))/tan(x) dx.
Equals Sum_{k >= 1} 1/(2k)^2. - Geoffrey Critzer, Nov 02 2013
Equals (1/10) * Sum_{k>=1} d(k^2)/k^2, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 27 2020
Equals Sum_{n >= 0} 1/((2*n+1)*(6*n+3)). - Peter Bala, Feb 02 2022
Equals Sum_{n>=0} ((-1)^n * (Sum_{k>=n+1} (-1)^k/k)^2) (Furdui, 2013). - Amiram Eldar, Mar 26 2022
Equals Sum_{n>=1} A369180(n)/n^2. - Friedjof Tellkamp, Jan 23 2025

Extensions

Leading 0 term removed (to make offset correct) by Rick L. Shepherd, Jan 01 2014